Molecular Mechanisms of Early Renal Fibrosis: Integrating Multi-Omics Evidence for Translational Nephrology
DOI:
https://doi.org/10.65327/kidneys.v15i1.610Keywords:
early renal fibrosis; multi-omics integration; chronic kidney disease; systems biology; single-cell transcriptomicsAbstract
Early renal fibrosis represents a critical and potentially reversible stage in the progression of chronic kidney disease, yet its complex molecular underpinnings remain incompletely understood. Traditional histopathological and single-pathway approaches have provided limited insight into the dynamic and heterogeneous processes driving fibrotic initiation. Recent advances in high-throughput omics technologies have enabled comprehensive interrogation of molecular alterations across multiple regulatory layers, offering new opportunities to elucidate early fibrogenic mechanisms. This comprehensive review synthesizes evidence from genomic, epigenomic, transcriptomic, proteomic, and metabolomic studies to define the molecular landscape of early renal fibrosis from a systems biology perspective. Integrated multi-omics analyses reveal that early fibrogenesis arises from coordinated dysregulation of profibrotic signaling pathways, metabolic reprogramming, inflammatory activation, and extracellular matrix remodeling rather than isolated molecular events. Single-cell and spatial transcriptomic studies further demonstrate that distinct cell-state transitions and spatially restricted interactions among epithelial, stromal, endothelial, and immune cells shape fibrotic niches prior to overt structural damage. Network-based integration identifies convergent molecular modules and key regulatory hubs that govern fibrosis initiation and progression, providing mechanistic insights with translational relevance. Collectively, these findings underscore the value of multi-omics integration for advancing early detection strategies, therapeutic target prioritization, and precision nephrology. While challenges remain, including limited longitudinal human datasets and technical barriers to data integration, multi-omics approaches are poised to transform understanding and management of early renal fibrosis by enabling mechanism-driven, individualized intervention strategies.
Downloads
References
Eddy S, Mariani LH, Kretzler M. Integrated multi-omics approaches to improve classification of chronic kidney disease. Nature Reviews Nephrology. 2020 Nov;16(11):657-68.
Miguel V, Shaw IW, Kramann R. Metabolism at the crossroads of inflammation and fibrosis in chronic kidney disease. Nature Reviews Nephrology. 2025 Jan;21(1):39-56.
Miguel V, Kramann R. Metabolic reprogramming heterogeneity in chronic kidney disease. FEBS Open Bio. 2023 Jul;13(7):1154-63.
Liu Y, Su YY, Yang Q, Zhou T. Stem cells in the treatment of renal fibrosis: a review of preclinical and clinical studies of renal fibrosis pathogenesis. Stem Cell Research & Therapy. 2021 Jun 10;12(1):333.
Tüchler N. Dynamic multi-omics and mechanistic modeling of kidney fibrosis progression (Doctoral dissertation).
Zheng R, Chen J, Wang Q, Lyu J, Deng M, Han J, Tan Z, Yuan L, Bai Z. Chronic Kidney Disease: A Benefit-Risk Panorama of Baricitinib through Integrating Network Toxicology, Molecular Docking and Real-World Evidence.
Meng Y, Sui L, Che L, Jin Z, Ma Y, Sun L. Protecting kidney function: from mechanisms to therapeutic targets and traditional Chinese medicine. Renal Failure. 2025 Dec 31;47(1):2539936.
Duan ZY, Bu R, Liang S, Chen XZ, Zhang C, Zhang QY, Li JJ, Chen XM, Cai GY. Urinary miR-185-5p is a biomarker of renal tubulointerstitial fibrosis in IgA nephropathy. Frontiers in Immunology. 2024 Feb 15;15:1326026.
Saliba A, Du Y, Feng T, Garmire L. Multi-omics integration in nephrology: advances, challenges, and future directions. InSeminars in nephrology 2024 Nov 1 (Vol. 44, No. 6, p. 151584). WB Saunders.
Yu XY, Sun Q, Zhang YM, Zou L, Zhao YY. TGF-β/Smad signaling pathway in tubulointerstitial fibrosis. Frontiers in pharmacology. 2022 Mar 24;13:860588.
Zhang Y, Jin D, Kang X, Zhou R, Sun Y, Lian F, Tong X. Signaling pathways involved in diabetic renal fibrosis. Frontiers in cell and developmental biology. 2021 Jul 12;9:696542.
Niculae A, Gherghina ME, Peride I, Tiglis M, Nechita AM, Checherita IA. Pathway from acute kidney injury to chronic kidney disease: molecules involved in renal fibrosis. International journal of molecular sciences. 2023 Sep 13;24(18):14019.
Geng K, Ma X, Jiang Z, Huang W, Gao C, Pu Y, Luo L, Xu Y, Xu Y. Innate immunity in diabetic wound healing: focus on the mastermind hidden in chronic inflammatory. Frontiers in pharmacology. 2021 Apr 21;12:653940.
Lojk J, Marc J. Roles of non-canonical Wnt signalling pathways in bone biology. International journal of molecular sciences. 2021 Oct 7;22(19):10840.
Gao J, Fan L, Zhao L, Su Y. The interaction of Notch and Wnt signaling pathways in vertebrate regeneration. Cell Regeneration. 2021 Apr 1;10(1):11.
Sreeshma B, Varshini MA, Patni AP, Devi A. Unravelling the crosstalk of Hedgehog with Wnt, Notch and TGF-β signaling pathways. InStem Cells and Signaling Pathways 2024 Jan 1 (pp. 181-203). Academic Press.
Ageeva T, Rizvanov A, Mukhamedshina Y. NF-κB and JAK/STAT signaling pathways as crucial regulators of neuroinflammation and astrocyte modulation in spinal cord injury. Cells. 2024 Mar 26;13(7):581.
Du J, Yang YC, An ZJ, Zhang MH, Fu XH, Huang ZF, Yuan Y, Hou J. Advances in spatial transcriptomics and related data analysis strategies. Journal of translational medicine. 2023 May 18;21(1):330.
Qi R, Yang C. Renal tubular epithelial cells: the neglected mediator of tubulointerstitial fibrosis after injury. Cell death & disease. 2018 Nov 13;9(11):1126.
LeBleu VS, Neilson EG. Origin and functional heterogeneity of fibroblasts. The FASEB Journal. 2020 Mar;34(3):3519-36.
Ferreira RM, Sabo AR, Winfree S, Collins KS, Janosevic D, Gulbronson CJ, Cheng YH, Casbon L, Barwinska D, Ferkowicz MJ, Xuei X. Integration of spatial and single-cell transcriptomics localizes epithelial cell–immune cross-talk in kidney injury. JCI insight. 2021 Jun 22;6(12):e147703.
Rao A, Barkley D, França GS, Yanai I. Exploring tissue architecture using spatial transcriptomics. Nature. 2021 Aug 12;596(7871):211-20.
Zhang L, Gao S, White Z, Dai Y, Malik AB, Rehman J. Single-cell transcriptomic profiling of lung endothelial cells identifies dynamic inflammatory and regenerative subpopulations. JCI insight. 2022 Jun 8;7(11):e158079.
Stoll S, Wang C, Qiu H. DNA methylation and histone modification in hypertension. International journal of molecular sciences. 2018 Apr 12;19(4):1174.
Ushijima T, Clark SJ, Tan P. Mapping genomic and epigenomic evolution in cancer ecosystems. Science. 2021 Sep 24;373(6562):1474-9.
Herman AB, Tsitsipatis D, Gorospe M. Integrated lncRNA function upon genomic and epigenomic regulation. Molecular cell. 2022 Jun 16;82(12):2252-66.
Chierici M, Bussola N, Marcolini A, Francescatto M, Zandonà A, Trastulla L, Agostinelli C, Jurman G, Furlanello C. Integrative network fusion: a multi-omics approach in molecular profiling. Frontiers in oncology. 2020 Jun 30;10:1065.
Blaser MC, Kraler S, Lüscher TF, Aikawa E. Multi-omics approaches to define calcific aortic valve disease pathogenesis. Circulation research. 2021 Apr 30;128(9):1371-97.
Zhang Y, Sun Z, Jia J, Du T, Zhang N, Tang Y, Fang Y, Fang D. Overview of histone modification. Histone mutations and cancer. 2020 Nov 7:1-6.
Zhao Y, Jhamb D, Shu L, Arneson D, Rajpal DK, Yang X. Multi-omics integration reveals molecular networks and regulators of psoriasis. BMC systems biology. 2019 Jan 14;13(1):8.
Pinero S, Li X, Liu L, Li J, Lee SH, Winter M, Nguyen T, Zhang J, Le TD. Integrative multi-omics framework for causal gene discovery in long COVID. PLOS Computational Biology. 2025 Dec 1;21(12):e1013725.
Ouyang JF, Mishra K, Xie Y, Park H, Huang KY, Petretto E, Behmoaras J. Systems level identification of a matrisome-associated macrophage polarisation state in multi-organ fibrosis. Elife. 2023 Sep 14;12:e85530.
Kim H. Transcriptomics data analysis from renal fibrosis (Doctoral dissertation).
Forrester SJ, Kikuchi DS, Hernandes MS, Xu Q, Griendling KK. Reactive oxygen species in metabolic and inflammatory signaling. Circulation research. 2018 Mar 16;122(6):877-902.
Woo HJ, Reifman J. Genetic interaction effects reveal lipid-metabolic and inflammatory pathways underlying common metabolic disease risks. BMC medical genomics. 2018 Jun 20;11(1):54.
Canzler S, Schor J, Busch W, Schubert K, Rolle-Kampczyk UE, Seitz H, Kamp H, Von Bergen M, Buesen R, Hackermüller J. Prospects and challenges of multi-omics data integration in toxicology. Archives of Toxicology. 2020 Feb;94(2):371-88.
Behmoaras J, Mulder K, Ginhoux F, Petretto E. The spatial and temporal activation of macrophages during fibrosis. Nature Reviews Immunology. 2025 Jun 4:1-5.
Jiang Z, Zhang H, Gao Y, Sun Y. Multi-omics strategies for biomarker discovery and application in personalized oncology. Molecular Biomedicine. 2025 Dec;6(1):115.
Guarino M, Luppi F, Maroncelli G, Baldin P, Costanzini A, Maritati M, Contini C, Sassone B, De Giorgio R, Spampinato MD. From cardiac injury to omics signatures: a narrative review on biomarkers in septic cardiomyopathy. Clinical and Experimental Medicine. 2025 Aug 21;25(1):298.
Alharbi F, Budhiraja N, Vakanski A, Zhang B, Elbashir MK, Guduru H, Mohammed M. Interpretable graph Kolmogorov–Arnold networks for multi-cancer classification and biomarker identification using multi-omics data. Scientific Reports. 2025 Jul 29;15(1):27607.
Tien NT, Yen NT, Phat NK, Anh NK, Thu NQ, Dinh Hoa V, Eunsu C, Kim HS, Nguyen DN, Kim DH, Oh JY. Circulating Lipids as Biomarkers for Diagnosis of Tuberculosis: A Multi-cohort, Multi-omics Data Integration Analysis. medRxiv. 2024 Aug 6:2024-08.

ISSN 2307-1257
ISSN 2307-1265
















