Synergistic effects of Lespedeza and artichoke extracts in the therapy of chronic kidney disease: mechanisms and perspectives

Authors

DOI:

https://doi.org/10.22141/2307-1257.14.1.2025.499

Keywords:

nephroprotection, oxidative stress, inflammatory cascade, hypoazotemic effect, phytotherapy, polyphenolic compounds, review

Abstract

Chronic kidney disease (CKD) is a major global health issue associated with oxidative stress, inflammation, and fibrosis. Traditional pharmacological approaches have limitations due to side effects and insufficient efficacy in the late stages of the disease. This study explores the potential of combining Lespedeza (Lespedeza spp.) and artichoke (Cynara scolymus) extracts in CKD treatment. The nephroprotective effect of Lespedeza extract is manifested in the reduction of albuminuria, nitrogen, and creatinine levels in urine. This is achieved through both direct antioxidant action, protecting membrane structures, DNA, and mitochondria, and indirect anti-inflammatory action, reducing NF-κB and inflammasome activity, as well as the release of pro-inflammatory cytokines and chemokines. The nephroprotective effect of artichoke extract is primarily attributed to the inhibition of the Wnt/β-catenin signaling pathway, which reduces fibrosis, and the suppression of pro-inflammatory cytokines (IL-1β, IL-2, IL-6, TNF-α, NF-κB, TGF-β1), preventing the progression of chronic inflammation in the kidneys. Additionally, artichoke extract inhi­bits angiotensin-converting enzyme, reducing renal hypertension and protecting kidney tissue from damage. The synergistic effect of Lespedeza and artichoke extracts may provide multifactorial nephron protection, minimizing inflammation and slowing fibrosis progression. A li­terature review confirms the promise of this approach and highlights the necessity of further preclinical and clinical stu­dies to determine optimal dosing regimens for CKD therapy.

Downloads

Download data is not yet available.

References

Hauwanga WN, Abdalhamed TY, Ezike LA, et al. The Pathophysiology and Vascular Complications of Diabetes in Chronic Kidney Disease: A Comprehensive Review. Cureus. 2024 Dec 28;16(12):e76498. doi: 10.7759/cureus.76498.

Romagnani P, Agarwal R, Chan JCN, et al. Chronic kidney disease. Nat Rev Dis Primers. 2025 Jan 30;11(1):8. doi: 10.1038/s41572-024-00589-9.

Hanaoka H, Aoki T, Kosaka T, et al. Chronic kidney disease and inflammatory cytokines in rheumatoid arthritis: a potential pathogenic link. Immunol Med. 2025 Jan 31:1-10. doi: 10.1080/25785826.2025.2460267.

Minutolo R, Lapi F, Chiodini P, et al. Risk of ESRD and death in patients with CKD not referred to a nephrologist: a 7-year prospective study. Clin J Am Soc Nephrol. 2014 Sep 5;9(9):1586-1593. doi: 10.2215/CJN.10481013.

Mazzieri A, Timio F, Patera F, Trepiccione F, Bonomini M, Reboldi G. Aldosterone Synthase Inhibitors for Cardiorenal Protection: Ready for Prime Time? Kidney Blood Press Res. 2024;49(1):1041-1056. doi: 10.1159/000542621.

Rakotoarison A, Kepinska M, Konieczny A, et al. Endothelin Inhibitors in Chronic Kidney Disease: New Treatment Prospects. J Clin Med. 2024 Oct 11;13(20):6056. doi: 10.3390/jcm13206056.

Zaychenko G, Kyslychenko V, Protska V, Fedosov A, Simonov P. Prospects for the Application of Nephroprotectors of Plant Origin Based on Lespedeza bicolor. Family Medicine. European Practices. 2024;(2):55-61. Ukrainian. doi: 10.30841/2786-720X.2.2024.307535.

Di Cerbo A, Iannitti T, Guidetti G, Centenaro S, Canello S, Cocco R. A nutraceutical diet based on Lespedeza spp., Vaccinium macrocarpon and Taraxacum officinale improves spontaneous feline chronic kidney disease. Physiol Rep. 2018 Jun;6(12):e13737. doi: 10.14814/phy2.13737.

Yarnell EL. Botanical medicines used for kidney disease in the United States. Iran J Kidney Dis. 2012 Nov;6(6):407-418.

Wang CY, Deng HZ, Li H. Experimental study on treatment of minimal change nephropathy with Lespedeza michx. Zhongguo Zhong Yao Za Zhi. 2005 Apr;30(8):614-617. Chinese.

Zhang R, Wang J, Wu C, Wang L, Liu P, Li P. Lipidomics-based natural products for chronic kidney disease treatment. Heliyon. 2025 Jan 2;11(1):e41620. doi: 10.1016/j.heliyon.2024.e41620.

Mitchell S, Vargas J, Hoffmann A. Signaling via the NFκB system. Wiley Interdiscip Rev Syst Biol Med. 2016 May;8(3):227-241. doi: 10.1002/wsbm.1331.

Ratliff BB, Abdulmahdi W, Pawar R, Wolin MS. Oxidant Mechanisms in Renal Injury and Disease. Antioxid Redox Signal. 2016 Jul 20;25(3):119-146. doi: 10.1089/ars.2016.6665.

Jha JC, Banal C, Chow BS, Cooper ME, Jandeleit-Dahm K. Diabetes and Kidney Disease: Role of Oxidative Stress. Antioxid Redox Signal. 2016 Oct 20;25(12):657-684. doi: 10.1089/ars.2016.6664.

DeWolf SE, Shigeoka AA, Scheinok A, Kasimsetty SG, Welch AK, McKay DB. Expression of TLR2, NOD1, and NOD2 and the NLRP3 Inflammasome in Renal Tubular Epithelial Cells of Male versus Female Mice. Nephron. 2017;137(1):68-76. doi: 10.1159/000456016.

Kim SM, Kim YG, Kim DJ, et al. Inflammasome-Independent Role of NLRP3 Mediates Mitochondrial Regulation in Renal Injury. Front Immunol. 2018 Nov 12;9:2563. doi: 10.3389/fimmu.2018.02563.

Park HS, Lim JH, Kim MY, et al. Resveratrol increases AdipoR1 and AdipoR2 expression in type 2 diabetic nephropathy. J Transl Med. 2016 Jun 11;14(1):176. doi: 10.1186/s12967-016-0922-9. 

Zhou L, Xu DY, Sha WG, et al. High glucose induces renal tubular epithelial injury via Sirt1/NF-kappaB/microR-29/Keap1 signal pathway. J Transl Med. 2015 Nov 9;13:352. doi: 10.1186/s12967-015-0710-y.

Chou X, Ding F, Zhang X, Ding X, Gao H, Wu Q. Sirtuin-1 ameliorates cadmium-induced endoplasmic reticulum stress and pyroptosis through XBP-1s deacetylation in human renal tubular epithelial cells. Arch Toxicol. 2019 Apr;93(4):965-986. doi: 10.1007/s00204-019-02415-8.

Lee JH, Parveen A, Do MH, Lim Y, Shim SH, Kim SY. Lespedeza cuneata protects the endothelial dysfunction via eNOS phosphorylation of PI3K/Akt signaling pathway in HUVECs. Phytomedicine. 2018 Sep 15;48:1-9. doi: 10.1016/j.phymed.2018.05.005.

Baek J, Lee TK, Song JH, et al. Lignan Glycosides and Flavonoid Glycosides from the Aerial Portion of Lespedeza cuneata and Their Biological Evaluations. Molecules. 2018 Aug 1;23(8):1920. doi: 10.3390/molecules23081920.

Dyshlovoy SA, Tarbeeva D, Fedoreyev S, et al. Polyphenolic Compounds from Lespedeza Bicolor Root Bark Inhibit Progression of Human Prostate Cancer Cells via Induction of Apoptosis and Cell Cycle Arrest. Biomolecules. 2020 Mar 14;10(3):451. doi: 10.3390/biom10030451.

Ruiz PA, Braune A, Hölzlwimmer G, Quintanilla-Fend L, Haller D. Quercetin inhibits TNF-induced NF-kappaB transcription factor recruitment to proinflammatory gene promoters in murine intestinal epithelial cells. J Nutr. 2007 May;137(5):1208-1215. doi: 10.1093/jn/137.5.1208.

Joma N, Zhang I, Righetto GL, et al. Flavonoids Regulate Redox-Responsive Transcription Factors in Glioblastoma and Microglia. Cells. 2023 Dec 12;12(24):2821. doi: 10.3390/cells12242821.

Yao C, Xi C, Hu K, et al. Inhibition of enterovirus 71 replication and viral 3C protease by quercetin. Virol J. 2018 Jul 31;15(1):116. doi: 10.1186/s12985-018-1023-6.

Bhattacharya K, Bordoloi R, Chanu NR, Kalita R, Sahariah BJ, Bhattacharjee A. In silico discovery of 3 novel quercetin derivatives against papain-like protease, spike protein, and 3C-like protease of SARS-CoV-2. J Genet Eng Biotechnol. 2022 Mar 9;20(1):43. doi: 10.1186/s43141-022-00314-7.

Zhang RM, Oh J, Wice BM, Dusso A, Bernal-Mizrachi C. Acute hyperglycemia induces podocyte apoptosis by monocyte TNF-α release, a process attenuated by vitamin D and GLP-1 receptor agonists. J Steroid Biochem Mol Biol. 2025 Jan 14;247:106676. doi: 10.1016/j.jsbmb.2025.106676.

Tan X, Chen P, Xiao L, et al. Extraction, purification, structural characterization, and anti-inflammatory activity of a polysaccharide from Lespedeza formosa. Int J Biol Macromol. 2025 Jan 22;300:140154. doi: 10.1016/j.ijbiomac.2025.140154.

Woo HS, Lee KH, Park KH, Kim DW. Flavonoids Derived from the Roots of Lespedeza bicolor Inhibit the Activity of SARS-CoV Papain-like Protease. Plants (Basel). 2024 Nov 26;13(23):3319. doi: 10.3390/plants13233319.

Sami U. Methanolic extract from Lespedeza bicolor: potential candidates for natural antioxidant and anticancer agent. J Tradit Chin Med. 2017 Aug;37(4):444-451.

Dudar IO, Loboda OM. Effectiveness of Lespedeza capitata use in patients with chronic kidney disease stage III–IV. Kidneys. 2023;12(3):37-43. Ukrainian.

Sokolova LK, Belchina JuB, Cymbal TS, Chervjakova SA, Sokolova AM. Use of Lespedeza capitula extract in the complex treatment of chronic kidney disease. Mìžnarodnij endokrinologìčnij žurnal. 2023;19(5):26-32. Ukrainian.

Do MH, Lee JH, Cho K, et al. Therapeutic Potential of Lespedeza bicolor to Prevent Methylglyoxal-Induced Glucotoxicity in Familiar Diabetic Nephropathy. J Clin Med. 2019 Jul 31;8(8):1138. doi: 10.3390/jcm8081138.

Do MH, Lee JH, Wahedi HM, et al. Lespedeza bicolor ameliorates endothelial dysfunction induced by methylglyoxal glucotoxicity. Phytomedicine. 2017 Dec 1;36:26-36. doi: 10.1016/j.phymed.2017.09.005.

Park JE, Lee H, Kim SY, Lim Y. Lespedeza bicolor Extract Ameliorated Renal Inflammation by Regulation of NLRP3 Inflammasome-Associated Hyperinflammation in Type 2 Diabetic Mice. Antioxidants (Basel). 2020 Feb 10;9(2):148. doi: 10.3390/antiox9020148.

Song W, Wei L, Du Y, Wang Y, Jiang S. Protective effect of ginsenoside metabolite compound K against diabetic nephropathy by inhibiting NLRP3 inflammasome activation and NF-κB/p38 signaling pathway in high-fat diet/streptozotocin-induced diabetic mice. Int Immunopharmacol. 2018 Oct;63:227-238. doi: 10.1016/j.intimp.2018.07.027.

Hong Q, Zhang L, Das B, et al. Increased podocyte Sirtuin-1 function attenuates diabetic kidney injury. Kidney Int. 2018 Jun;93(6):1330-1343. doi: 10.1016/j.kint.2017.12.008.

El-Houseiny W, Basher AW, Mahmoud YK, et al. Mitigation of sodium fluoride-induced growth inhibition, immunosuppression, hepatorenal damage, and dysregulation of oxidative stress, apoptosis, and inflammation-related genes by dietary artichoke (Cynara scolymus) leaf extract in Oreochromis niloticus. Comp Biochem Physiol B Biochem Mol Biol. 2025 Apr-May;277:111068. doi: 10.1016/j.cbpb.2024.111068.

Ben Salem M, Affes H, Dhouibi R, et al. Preventive effect of Artichoke (Cynara scolymus L.) in kidney dysfunction against high fat-diet induced obesity in rats. Arch Physiol Biochem. 2022 Jun;128(3):586-592. doi: 10.1080/13813455.2019.1703755.

Eassawy MMT, Ismail AFM. Protective effect of chicory and/or artichoke leaves extracts on carbon tetrachloride and gamma-irradiation-induced chronic nephrotoxicity in rats. Environ Toxicol. 2024 Mar;39(3):1666-1681. doi: 10.1002/tox.24060.

Khaled A, Ahmed E, Mamdouh M, et al. Natural angiotensin converting enzyme inhibitors: A safeguard against hypertension, respiratory distress syndrome, and chronic kidney diseases. Phytother Res. 2023 Dec;37(12):5464-5472. doi: 10.1002/ptr.7987.

Kim DB, Unenkhuu B, Kim GJ, Kim SW, Kim HS. Cynarin attenuates LPS-induced endothelial inflammation via upregulation of the negative regulator MKP-3. Anim Cells Syst (Seoul). 2022 May 20;26(3):119-128. doi: 10.1080/19768354.2022.2077438.

Published

2025-03-25

How to Cite

Serebrovska, Z., Tolstun, D., Sykalo, N., Farkhidinov, I., Kropyva, V., Myhovan, S., Chizhova, V., Kovtonyuk, T., Samots, I., & Mankovsky, B. (2025). Synergistic effects of Lespedeza and artichoke extracts in the therapy of chronic kidney disease: mechanisms and perspectives. KIDNEYS, 14(1), 63–70. https://doi.org/10.22141/2307-1257.14.1.2025.499

Issue

Section

Reviews