New positron emission radiopharmaceuticals in urological radionuclide imaging

Authors

  • P.A. Korol MD, PhD, Assistant of the Department of radiology, Bogomolets National Medical University, Kyiv, Ukraine
  • O.V. Shcherbina MD, PhD, Professor, Head of the Department of radiology, Bogomolets National Medical University, Kyiv, Ukraine

DOI:

https://doi.org/10.22141/2307-1257.8.4.2019.185125

Keywords:

radionuclide imaging, positron emission tomography, radiopharmaceutical, kidneys, glomerular filtration rate, effective renal plasma flow, review

Abstract

The literature review examines the historical aspects and key issues of the clinical application of new radiopharmaceuticals (RF) for positron emission tomography (PET). The gold standard for measuring effective renal plasma flow is p-[18F] fluorohippurate ([18F] PFH) due to its structure close to p-aminoimpurate one. [18F] FDS is a new potential tracer for the diagnosis of acute renal failure. PET tracers Re (CO) 3 ([18F] FEDA) and [18F] PFH are effective as surrogate markers for the selection of patients for endoradiotherapy with a potential nephrotoxic profile, in patients with hematopoietic malignant tumours and prostate cancer. PET imaging of the kidneys and urinary system can be of additional importance in difficult clinical situations and provide effective support in making diagnostic decisions, in particular in paediatric patients. Further scientific diagnostic research should focus on the synthesis of new radiopharmaceuticals that will have ideal properties for renal functional imaging, low binding to plasma proteins, high metabolic stability and low hepatobiliary clearance.

Downloads

Download data is not yet available.

References

Abrass C.K. Diabetic nephropathy. Mechanisms of mesangial matrix expansion. West J. Med. 1995. Vol. 162. P. 318-321.

Arroyo A.J. Effective renal plasma flow determination using technetium-99m MAG3: comparison of two camera techniques with the Tauxe method. J. Nucl. Med. Technol. 1993. Vol. 21. P. 162-166.

Awasthi V., Pathuri G., Agashe H.B. Synthesis and in vivo evaluation of p-18F-fluorohippurate as a new radiopharmaceutical for assessment of renal function by PET. J. Nucl. Med. 2011. Vol. 52. P. 147-153. Doi: 10.2967/jnumed.110.075895.

Blaufox M.D. PET measurement of renal glomerular filtration rate:is there a role in nuclear medicine? J. Nucl. Med. 2016. Vol. 57. P. 1495-1496. doi: 10.2967/jnumed.116.174607.

Chantler C., Garnet E.S., Parsons V. et al. Glomerular filtration rate measurement in man by the single injection methods using 52 Cr-EDTA. Clin. Sci. 1969. Vol. 37. P. 169-180.

De Santo N.G., Anastasio Р., Cirillo М. et al. Measurement of glomerular filtration rate by the 99mTc-DTPA renogram is less precise than measured and predicted creatinine clearance. Nephron. 1999. Vol. 81. P. 136-140. https://doi.org/10.1159/000045268.

Ducharme J., Goertzen A.L., Patterson J. Practical aspects of 18F-FDGPET when receiving 18F-FDG from a distant supplier. Jnucl. Med. Technol. 2009. Vol. 37. P. 164-169. Doi: 10.2967/jnmt.109.062950.

Eshima D. 99mTc renal tubular function agents: current status. Semin. Nucl. Med. 1990. Vol. 20. P. 28-40.

Geist B.K., Baltzer P., Fueger B. et al. Assessing the kidney function parameters glomerular filtration rate and effective renal plasma flow with dynamic FDG-PET/MRI in healthy subjects. EJNMMI Res. 2018. Vol. 8. P. 37. doi: 10.1186/s13550-018-0389-1.

Gordon I., Piepsz А., Sixt R. Auspices of Paediatric Committee of European Association of Nuclear Medicine. Guidelines for standard and diuretic renogram in children. Eur. J. Nucl. Med. Mol. Imaging. 2011. Vol. 38. P. 1175-1188. Doi: 10.1007/s00259-011-1811-3.

Gundel D. Assessing glomerular filtration in small animals using [(68)Ga]DTPA and [(68)Ga]EDTA with PET imaging. Mol. Imaging. Biol. 2018. Vol. 20. P. 457-464. doi. 10.1007/s11307-017-1135-1.

Hanssen O., Erpicum Р., Lovinfosse Р. et al. Non-invasive approaches in the diagnosis of acute rejection in kidney transplant recipients. Part I. In vivo imaging methods. Clin. Kidney J 2017. Vol. 10. P. 97-105. Doi: 10.1093/ckj/sfw062.

Hartlev L.B., Boeje C.R., Bluhme H. et al. Monitoring renal function during chemotherapy. Eur. J. Nucl. Med. Mol. Imaging. 2012. Vol. 39. P. 1478-1482. doi. 10.1007/s00259-012-2158-0.

Hofman M., Binns D., Johnston V. 68Ga-EDTA PET/CTimaging and plasma clearance for glomerular filtration rate quantification: comparison to conventional 51Cr-EDTA. J Nucl Med. 2015. Vol. 56. P. 405-409. https://doi.org/10.2967/jnumed.114.147843.

Hofman M.S., Hicks R.J. Gallium-68 EDTA PET/CT for renal imaging. Semin. Nucl. Med. 2016. Vol. 46. P. 448-461. doi: 10.1053/j.semnuclmed.2016.04.002.

Hofman M.S., Violet J., Hicks R.J. et al. [(177)Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study. Lancet Oncol. 2018. Vol. 19. P. 825-833. Doi: 10.1016/S1470-2045(18)30198-0.

Inker L.A., Schmid C.H., Tighiouart H. et al. Estimating glomerular filtration rate from serum creatinine and cystatin. N. Engl. J. Med. 2012. Vol. 367. P. 20-29. https:// doi.org/10.1056/NEJMoa1114248.

Inoue Y., Yoshikawa К., Suzuki Т. et al. Attenuation correction in evaluating renal function in children and adults by a camera-based method. J. Nucl. Med. 2000. Vol. 41. P. 823-829.

Jackson P., Foroudi F., Pham D. et al. Short communication: timeline of radiation-induced kidney function loss after stereotactic ablative body radiotherapy of renal cell carcinoma as evaluated by serial (99m)Tc-DMSA SPECT/CT. Radiat. Oncol. 2014. Vol. 9. P. 253. doi: 10.1186/s13014-014-0253-z.

Klenc J., Taylor А., Lipowska М. Synthesis and evaluation of 99mTc(CO)3(FEDA): a new dual-purpose 99mTc/18F renal imaging agent. J. Nucl. Med. 2015. Vol. 56. Suppl. 3. P. 654.

Klopper J.F., Hauser W., Atkins H.L. et al. Evaluation of 99m Tc-DTPA for the measurement of glomerular filtration rate. J. Nucl. Med. 1972. Vol. 13. P. 107-110.

Kobayashi R., Chen Х., Werner R.A. et al. New horizons in cardiac innervationimaging: introduction ofnovel (18)F-labeled PET tracers. Eur. J. Nucl. Med. Mol. Imaging. 2017. Vol. 44. P. 2302-2309. Doi: 10.1007/s00259-017-3828-8.

Korol P., Tkachenko М. The role of radioactive methods in the diagnostic type of hydronephrosis in clean-up workers of chornodil accident. Problems of radiation medicine and radiobiology. 2018. Vol. 23. P. 351-358.

Kundin V., Pospelov S. Dynamic renoscintigraphy in urjljgical practice. Urology. 2012. Vol. 16. № 4. P. 5-24.

Li Z.B., Wu Z., Cao Q. et al. The synthesis of 18F-FDS and its potential application in molecular imaging. Mol. Imaging. Biol. 2008. Vol. 10. P. 92-98. Doi: 10.1007/s11307-007-0125-0.

Li J., Zheng Н., Fodah R. Validation of 2-(18)F-fluorodeoxysorbitol as a potential radiopharmaceutical for imaging bacterial infection in the lung. J. Nucl. Med. 2018. Vol. 59. P. 134-139. Doi: org/10.2967/jnumed.117.195420.

Lipowska M., Jarkas N., Voll R.J. et al. Re(CO)3([18F]FEDA), a novel (18)F PET renal tracer: radiosynthesis and preclinical evaluation. Nucl. Med. Biol. 2018. Vol. 58. P. 42-50. Doi: 10.1016/j.nucmedbio.2017.12.001.

Lipowska M., Klenc J., Jarkas N. et al. Monoanionic (99m)Tc-tricarbonyl-aminopolycarboxylate complexes with uncharged pendant groups: radiosynthesis and evaluation as potential renal tubular tracers. Nucl. Med. Biol. 2017. Vol. 47. P. 48-55. Doi: 10.1016/j.nucmedbio.2016.12.008.

Lipowska M., Klenc J., Shetty D. et al. Al18F-NODA-butyric acid: biological evaluation of a new PET renal radiotracer. Nucl. Med. Biol. 2014. Vol. 41. P. 248-253. Doi: 10.1016/j.nucmedbio.2013.12.010.

Ma Y.C., Zuo L., Zhang C.L. et al. Comparison of 99mTc-DTPA renal dynamic imaging with modified MDRD equation for glomerular filtration rate estimation in Chinese patients in different stages of chronic kidney disease. Nephrol. Dial. Trаnsplant. 2007. Vol. 22. P. 417-423. Doi: 10.1093/ndt/gfl603.

Matsushita K., van der Velde М., Astor В.С. et al. Associationof estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet. 2010. Vol. 375. P. 2073-2081. doi: org/10.1016/S0140-6736(10)60674-5.

Maurer S., Herhaus Р., Lippenmeyer R. Side effects of CXC-chemokine receptor 4-directed endoradiotherapy with pentixather prior to hematopoietic stem cell transplantation. J. Nucl. Med. 2019. Doi: 10.2967/jnumed.118.223420.

Pathuri G., Hedrick А., Awasthi V. et al. Evaluation of Para-18F-fluorohippurate PET renography to predict future disease progression in a rat model of ADPKD. J. Nucl. Med. 2015. Vol. 56. P. 1077.

Pathuri G., Sahoo К., Awasthi V. et al. Renogram comparison of p-(18)F]fluorohippurate with o-[(125)I] iodohippurate and [(99m)Tc]MAG3 in normal rats. Nucl. Med. Commun. 2011. Vol. 32. P. 908-912. Doi: 10.1097/MNM.0b013e32834a6db6.

Qin Z., Hoh C.K., Olson E.S. et al. Molecular imaging of the glomerulus via mesangial cell uptake of radiolabeled tilmanocept. J. Nucl. Med. 2019. doi: 10.2967/jnumed.118.223727.

Rehling M., Nielsen L.E., Marqversen J. Protein binding of 99Tc-DTPA compared with other GFR tracers. Nucl. Med. Commun. 2001. Vol. 22. P. 617-623.

Rehling M. Stability, protein binding and clearance studies of [99mTc]DTPA. Evaluation of a commercially available dry-kit. Scand. J. Clin. Lab. Invest. 1988. Vol. 48. P. 603-609.

Sanchez-Crespo A. Comparison of gallium-68 and fluorine-18imaging characteristics in positron emission tomography. Appl. Radiat. Isot. 2013. Vol. 76. P. 55-62. doi: 10.1016/j.apradiso.2012.06.034.

Schaer L.R., Anger Н.О., Gottschalk А. Gallium edetate 68Ga experiences in brain-lesion detection with the positron camera. JAMA. 1966. Vol. 198. P. 811-813.

Shokeir A.A., Gad H.M., el-Diasty T. Role of radioisotope renal scans in the choice of nephrectomy side in live kidney donors. Jurol. 2003. Vol. 170. P. 373-376. Doi: 10.1097/01.ju.0000074897.48830.58.

Smith W.W., Finkelstein N., Smith N.F. et al. Renal excretion of hexitols (sorbitol, mannitol, and dulcitol) and their derivatives (sorbitan, isomannide, and sorbide) and of endogenous creatinine-like chromogen in dog and man. J. Biol. Chem. 1940. Vol. 135. P. 231-250.

Sobh M., Neamatallah А., Sheashaa Н. Sobh formula: a new formula for estimation of creatinine clearance in healthy subjects and patients with chronic renal disease. Int. Urol. Nephrol. 2005. Vol. 37. P. 403-408. doi: 10.1007/s11255-004-1262-x.

Soveri I., Berg U.B., Bjork J. et al. Measuring GFR: a systematic review. Am. J. Kidney Dis. 2014. Vol. 64. P. 5.

Strosberg J., El-Haddad G., Wolin Е. et al. Phase 3 trial of (177)Lu-Dotatate for midgut neuroendocrine tumors. N. Engl. J. Med. 2017. Vol. 376. P. 125-135. Doi: 10.1056/NEJMoa1607427.

Szabo Z., Xia J., Mathews W.B. et al. Future direction of renal positron emission tomography. Semin. Nucl. Med. 2006. Vol. 36. P. 36-50. Doi: 10.1053/j.semnuclmed.2005.08.003.

Taylor A.T. Radionuclides in nephrourology, part 1: radiopharmaceuticals, quality control, and quantitative indices. J. Nucl. Med. 2014. Vol. 55. P. 608-615. Doi: 10.2967/jnumed.113.133447.

Taylor A.T. Radionuclides in nephrourology, part 2: pitfalls and diagnostic application. J. Nucl. Med. 2014. Vol. 55. P. 786-798. doi: 10.2967/jnumed.113.133454.

Wakabayashi H., Werner R.A., Hayakawa N. Initial preclinical evaluation of 18F-fluorodeoxysorbitol PET as a novel functional renal imaging agent. J. Nucl. Med. 2016. Vol. 57. P. 1625-1628. https://doi.org/10.2967/jnumed.116.172718.

Weinberger S., Bader M., Scheurig-Munkler С. et al. Optimizing evaluation of split renal function in a living kidney donor using scintigraphy and calculation of the geometric mean: a case report. Case Rep. Nephrol. Urol. 2014. Vol. 4. P. 1-4. Doi: 10.1159/000358007.

Weinberger S., Baeder М., Scheurig-Muenkler С. et al. Optimizing scintigraphic evaluation of split renal function in living kidney donors using the geometric mean method: a preliminary retrospective study. J. Nephrol. 2016. Vol. 29. P. 435-441. Doi: 10.1007/s40620-015-0223-z.

Weinstein E.A., Ordonez А.А., De Marco V.P. et al. Imaging Enterobacteriaceae infection in vivo with 18F-fluorodeoxysorbitol positron emission tomography. Sci. Transl. Med. 2014. Vol. 6. P. 259. doi: 10.1126/scitranslmed.3009815.

Werner R.A., Beykan S., Higuchi Т. et al. The impact of 177Lu-octreotide therapy on 99mTc-MAG3 clearance is not predictive for late nephropathy. Oncotarget. 2016. Vol. 7. P. 41233-41241.

Werner R.A., Chen Х., Hirano М. SPECT vs. PET in cardiac innervation imaging: clash of the titans. Clin. Transl. Imaging. 2018. Vol. 6. P. 293-303. doi: 10.1007/s40336-018-0289-4.

Werner R.A., Chen Х., Lapa С. et al. The next era of renal radionuclide imaging: novel PET radiotracers. Eur. J. Nucl. Med. Mol. Imaging. 2019. Vol. 46. P. 1773-1786.

Werner R.A., Chen Х., Rowe S.P. et al. Recent paradigm shifts in molecular cardiac imaging — establishing precision cardiology through novel 18F-labeled PET radiotracers. Trends Cardiovasc. Med. 2019. doi: 10.1016/j.tcm.2019.02.007.

Werner R.A., Ordonez A.A., Sanchez-Bautista J. et al. Novel functional renal PETimaging with 18F-FDS in human subjects. Clin. Nucl. Med. 2019. Vol. 44. Р. 410-411. doi: /10.1097/RLU.0000000000002494.

Werner R.A., Wakabayashi Н., Chen Х. et al. Functional renal imaging with 2-deoxy-2-(18)F-fluorosorbitol PETin rat models of renal disorders. J. Nucl. Med. 2018. Vol. 59. P. 828-832. doi: org/10.2967/jnumed.117.203828.

Published

2021-09-08

How to Cite

Korol, P., & Shcherbina, O. (2021). New positron emission radiopharmaceuticals in urological radionuclide imaging. KIDNEYS, 8(4), 249–256. https://doi.org/10.22141/2307-1257.8.4.2019.185125

Issue

Section

Reviews