Сучасна фармакотерапія

Modern Pharmacotherapy

УДК 615.01-616.4

ИВАНОВА М.Д., СКАЛИЙ Н.Н., ИВАНОВ Д.Д. Кафедра нефрологии и ПЗТ НМАПО имени П.Л. Шупика, г. Киев НМУ имени А.А. Богомольца, г. Киев

ПРИМЕНЕНИЕ ПРЕПАРАТОВ ГРУППЫ БЛОКАТОРОВ РЕЦЕПТОРОВ АНГИОТЕНЗИНА В КОМПЛЕКСНОЙ ТЕРАПИИ ПАЦИЕНТОВ С ГИПЕРТОНИЧЕСКОЙ БОЛЕЗНЬЮ И САХАРНЫМ ДИАБЕТОМ

На сегодняшний день в медицине отмечается тенденция к возрастанию конкуренции между различными методиками диагностики и лечения. Особенно это касается фармакологических продуктов.

В свою очередь, каждый специалист из всего множества представленных на рынке препаратов пытается подобрать наименьшее количество необходимых лекарственных средств, максимально индивидуализируя выбор у каждого отдельного пациента.

Современная парадигма предоставления медицинских услуг предполагает, что лечащий врач должен по возможности придерживаться всех текущих рекомендаций и протоколов, предоставленных Всемирной организацией здравоохранения и рабочими группами специализированных медицинских ассоциаций. Последние, как правило, основаны на принципах доказательной медицины, что обусловливает постоянно возрастающие требования к эффективности и безопасности каждой методики и каждого препарата. Эти требования в основном сосредоточены на увеличении биодоступности лекарственного средства, снижении его токсичности, наличии у него плейотропных эффектов.

Все вышеперечисленное является целесообразным ввиду того, что, пожалуй, не существует ни одного пациента, у которого наблюдалось бы лишь одно заболевание.

Как правило, практикующий специалист имеет дело с множеством патологических процессов и состояний в различных сочетаниях, каждое из которых необходимо учитывать при назначении соответствующей терапии и стремиться минимизировать количество необходимых препаратов.

Наиболее часто это актуально при ведении пожилых пациентов, которые составляют львиную долю контингента больных. В данной группе врач сталкивается с различными сочетаниями гипертонической болезни (ГБ), хронической болезни почек (ХБП), генерализованного атеросклероза, ишемической болезни сердца и сахарного диабета (СД). Особенность ведения подобных больных состоит в том, что указанные патологические состояния не просто существуют одновременно, но и активно усугубляют течение друг друга, находясь в стойкой патогенетической взаимосвязи.

К примеру, основным звеном практически всех форм артериальной гипертензии, в частности эссенциальной, является нарушение регуляции в ренин-ангиотензин-альдостероновой системе. ГБ, вызывая гиалиноз сосудов мелкого калибра (как и

Адрес для переписки с авторами:

Иванова Мария Дмитриевна E-mail: ivanovdd@i.kiev.ua

- © Иванова М.Д., Скалий Н.Н., Иванов Д.Д., 2015
- © «Почки», 2015
- © Заславский А.Ю., 2015

сахарный диабет), приводит к артериолосклеротическому нефросклерозу. Атеросклероз, сегментарно поражая более крупные сосуды, вызывает крупноочаговый нефросклероз. Развивающаяся в результате ХБП усугубляет течение всех вызвавших ее заболеваний. Есть и другой вариант, когда первичное поражение почек приводит к развитию вторичной артериальной гипертензии. В этом случае уже сочетание почечной недостаточности и повышенного системного артериального давления (САД) усугубляет течение существующих заболеваний, в конечном итоге приводя к их декомпенсации.

Согласно рекомендациям JNC 8, ESC/ESH 2013, KDIGO 2012, NICE 2014 препаратами выбора в лечении артериальной гипертензии у пациентов с ХБП, ХБП в сочетании с сахарным диабетом и ГБ, а также у лиц с артериальной гипертензией до 55 лет (NICE, 2012) являются лекарственные средства, которые, с одной стороны, обладают эффективными вазодилатирующими свойствами, с другой — имеют множество благоприятных плейотропных эффектов, предотвращающих дальнейшее поражение органов, в частности почек. Это ингибиторы ангиотензинпревращающего фермента (АПФ) и блокаторы рецепторов ангиотензина II (БРА).

Ангиотензин II — не только один из самых сильных вазоконстрикторов, он также ответственен за множество других неблагоприятных эффектов, таких как задержка натрия и воды, активация симпатоадреналовой системы, повышение степени гипертрофии миокарда, инициирование и усиление фибропластических процессов [1].

Что касается плейотропных эффектов у данных классов лекарственных средств, интерес представляет одно из исследований, проведенных японскими учеными Т. Suzuki et al. в 2011 г., целью которого было установить эффекты БРА в лечении и профилактике генерализованного атеросклероза.

В этом испытании проводилась 64-срезная компьютерная томография для оценки степени поражения сосудистой стенки. В течение двух лет исследовались две группы пациентов, в одной из которых применялся только аторвастатин, во второй — его комбинация с одним из представителей БРА. Результаты показали, что при монотерапии аторвастатином атеросклеротическое поражение спустя два года оказалось статистически большим, чем при комбинированной терапии с препаратом из группы БРА [2].

Помимо вазодилатирующих свойств, данные группы лекарственных средств обладают прямым нефропротекторным эффектом благодаря блокированию неблагоприятного воздействия ангиотензина на паренхиму почек, замедлению тубулоинтерстициального фиброза, снижению внутриклубочковой гипертензии.

Анализ множества литературных данных и опубликованных исследований, сделанный Zanchetti и Ruilope, свидетельствует о наличии у препаратов группы БРА нефропротекторного действия [3].

По этой причине обе группы препаратов в обязательном порядке входят, в частности, в рекомендации Best Practice от 21.10.2013 по лечению диабетической нефропатии [4].

В различных исследованиях подтверждены преимущества БРА перед ингибиторами АП Φ у пациентов с данной патологией [5].

Детальный анализ представителей обеих групп препаратов позволяет заключить, что при всей схожести оказываемых эффектов значительный перевес оказывается на стороне БРА.

Данный вывод можно сделать, учитывая селективность БРА, так как они блокируют только рецепторы к ангиотензину типа 1, не вызывают повышения уровня брадикинина и связанных с последним побочных эффектов в виде развития ангионевротического отека и появления сухого кашля у пациентов [6].

Помимо этого, представители БРА оказывают более выраженное антигипертензивное действие, так как ангиотензин II может образовываться под действием не только АПФ [7].

Кроме того, на практике применяются только селективные блокаторы рецепторов ангиотензина II типа 1, что не только позволяет проявиться положительным эффектам взаимодействия гормона с рецепторами типа 2, но и усиливает его. Это происходит в связи с повышением уровня ангиотензина II по механизму обратной связи. Так как рецепторы типа 1 уже заблокированы препаратом, возрастает степень воздействия на рецепторы типа 2, что усиливает органопротекторный эффект.

Проводя сравнительную характеристику препаратов БРА и ингибиторов АПФ, нельзя не учесть весьма репрезентативные данные исследования ESPORT по оценке эффективности БРА и ингибиторов АПФ, в частности рамиприла, у пожилых пациентов. В рамках данного испытания 1102 пациента возрастом от 65 до 89 лет с ГБ (систолическое AД - 140-179 мм рт.ст., диастолическое -90-109 мм рт.ст.) были распределены на две группы. В одной участники получали олмесартана медоксомил в дозе 10 мг/сут, в другой — рамиприл в дозе 2,5 мг/сут на протяжении 12 недель. У всех пациентов проводилось суточное наблюдение за уровнем системного АД. По достижении контрольных точек (2 и 6 недель) дозы корректировались в зависимости от того, снизилось ли АД до необходимого значения, и от наличия у пациентов СД.

В результате было выяснено, что антигипертензивный эффект БРА развивался быстрее (снижение АД в первые 6 часов после приема было значительнее), был в целом более выраженным (уменьшение систолического АД в среднем на 17,8 мм рт.ст., диастолического — на 9,2 мм рт.ст. в сравнении с

15,7 и 7,7 мм рт.ст. соответственно при приеме рамиприла), лучше сохранялся на протяжении суток (АД в группе БРА было на 11,0 и 6,5 мм рт.ст. ниже первоначального, показатели рамиприла — соответственно 9,0 и 5,4 мм рт.ст.), что позволяло добиться стабилизации артериального давления у 52,6 % пациентов (при использовании ингибитора АПФ — у 46,0 %). Частота и выраженность неблагоприятных эффектов, связанных с терапией, в группах не отличались.

Авторы исследования заключили, что БРА обладают более выраженным и стабильным эффектом в группе пожилых пациентов с ГБ с/без СД [8].

Учитывая наличие у БРА всех достоинств ингибиторов АП Φ и отсутствие неблагоприятных эффектов, связанных с приемом последних, все больше рабочих групп и практикующих врачей отдают предпочтение представителям БРА.

Что касается выбора наиболее универсального и эффективного представителя из группы БРА, то на эту тему существует множество исследований и клинических испытаний. Проанализировав большинство из них, можно прийти к выводу, что наиболее приемлемыми вариантами в лечении и профилактике почечной патологии, сочетанной с сахарным диабетом и/или артериальной гипертензией, на сегодняшний день являются ирбесартан, олмесартан, а наиболее многообещающим и перспективным — азилсартан.

Учитывая новизну молекулы, в этой статье мы проанализируем эффективность и безопасность азилсартана на основании данных передовых международных исследований.

В первую очередь стоит упомянуть, что этот препарат еще в 2011 году был одобрен Американским управлением по контролю продуктов питания и лекарственных средств (FDA) и определен как более предпочтительный по сравнению с олмесартаном — представителем БРА, ранее занимавшим лидирующее место по терапевтическому эффекту и частоте назначений.

Азилсартана медоксомил является пролекарством и после приема внутрь быстро гидролизуется до активного азилсартана в желудочно-кишечном тракте. Биодоступность составляет 60 %. Максимальная концентрация в крови достигается на протяжении 1,5—3 часов. Азилсартан хорошо связывается с белками плазмы крови. Препарат метаболизируется в печени, выводится в основном с калом в виде метаболитов, частично с мочой. Период полувыведения составляет 11 часов.

Гипотензивный эффект азилсартана длится на протяжении 24 часов. При приеме препарата не отмечается влияния на реполяризацию миокарда (не обнаруживается признаков удлинения интервала QT). Синдрома отмены после прекращения приема не наблюдается.

Прежде всего стоит обратить внимание на впервые проведенный метаанализ эффективности

азилсартана по сравнению с большинством других антигипертензивных препаратов, представленный H. Takagi et al., по результатам которого показана более выраженная способность азилсартана к снижению САД [9].

В другом двойном слепом плацебо-контролируемом исследовании также продемонстрирован выраженный антигипертензивный эффект азилсартана как в виде монотерапии, так и в комбинации с хлорталидоном [10]. Одной из основных целей данного исследования было определение безопасности применения азилсартана, а также оценка безопасности его отмены. Согласно полученным результатам авторы пришли к выводу, что применение данного препарата имеет низкую частоту и что в случае отмены препарата не отмечается значимых эффектов.

При анализе данных множества исследований по эффективности комбинации азилсартана и хлорталидона в снижении САД, проведенном V. Barrios и C. Escobar, показано ее преимущество перед другими комбинациями БРА и ингибиторов АПФ с диуретиками. В рамках анализа сравнивались действия таких препаратов, как рамиприл, валсартан, кандесартан и олмесартан [11].

Если говорить о сопоставлении антигипертензивного действия различных представителей БРА, особого внимания заслуживают нижеприведенные данные.

В одном из исследований сравнивались гипотензивные эффекты азилсартана и валсартана. По его результатам авторы заключили, что азилсартан обладает более выраженным терапевтическим эффектом и гораздо лучшей переносимостью, чем валсартан [12].

В аналогичном сравнительном исследовании также было отмечено преимущество азилсартана перед олмесартаном. При этом стандартные дозы азилсартана оказались эффективнее, чем повышенные дозы олмесартана [13].

Также хорошо зарекомендовала себя комбинация БРА с блокаторами кальциевых каналов, например амлодипином, что подтверждается исследованием М.А. Weber et al., в котором показано, что комбинация азилсартана с амлодипином является весьма эффективной и хорошо переносимой [14].

Возвращаясь к позитивным плейотропным эффектам препарата, стоит упомянуть не только нефро- и кардиопротекторные свойства азилсартана, но и его впечатляющие церебропротекторные свойства.

В связи с этим особого интереса заслуживает доклиническое исследование М. Abdelsaid, в котором применение азилсартана оказывало значительное вазопротекторное влияние на сосуды центральной нервной системы при их поражении в случае сахарного диабета, независимо от степени снижения АД [15].

В исследовании R. Nagata et al. (2009) продемонстрирована способность препаратов из числа

БРА улучшать церебральное кровообращение у пациентов с ГБ. В этом исследовании принимали участие больные с эссенциальной гипертензией первой или второй степени, средний возраст которых составлял 70,5 года. Результаты оценивались при помощи однофотонной эмиссионной компьютерной томографии (ОФЭКТ). Среднее систолическое АД составляло 156,2 ± 9,9 мм рт.ст., диастолическое — 89.1 ± 5.5 мм рт.ст. Ни у одного участника в анамнезе не наблюдалось никаких неврологических проблем, носивших органический характер. До приема олмесартана у данных пациентов церебральное кровообращение в целом было ниже на 15 %, чем у людей того же возраста без признаков АГ. После 24 недель применения по данным ОФЭКТ показано, что при приеме представителя БРА олмесартана восстанавливается уровень мозгового кровообращения у пожилых людей без признаков органического поражения головного мозга [16].

В исследовании М.А. Нуе Khan также отмечен значительный кардио- и нефропротекторный эффект азилсартана [17].

Учитывая результаты вышеуказанных исследований, можно заключить, что азилсартан имеет выраженное кардио-, церебро- и нефропротекторное действие. И на сегодняшний день блокаторы рецепторов ангиотензина II входят во все передовые рекомендации по лечению почечной патологии, сахарного диабета и артериальной гипертензии.

В итоге благодаря данному препарату лечащий врач получает возможность назначать минимальное количество необходимых лекарственных средств (так как препараты этой группы позволяют воздействовать сразу на несколько механизмов патогенеза таких патологических состояний, как артериальная гипертензия, сахарный диабет и ХБП) и более свободно подбирать индивидуальную дозировку.

Сегодня на рынке Украины азилсартана медоксомил представлен препаратом Эдарби $^{\text{тм}}$, который применялся во многих клинических исследованиях и доказал свою эффективность и безопасность. Мощный антигипертензивный эффект, высокая эффективность при АГ и СД, великолепная переносимость, плейотропные свойства и ценовая доступность позволяют рассматривать Эдарби $^{\text{тм}}$ как современный инновационный препарат для стартовой терапии и изменения уже назначенного лечения при диабетической болезни почек, гипертензивной нефропатии, хронической болезни почек.

Список литературы

- 1. Unger T., Culman J., Gohlke P. Angiotensin II receptor blockade and end-organ protection: pharmacological rationale and evidence // J. Hypertens. 1998. 16 (Suppl. 7). S3-9.
- 2. Suzuki T., Nozawa T., Fujii N., Sobajima M., Ohori T., Shida T., Matsuki A., Kameyama T., Inoue H. Combination therapy of candesartan with statin inhibits progression of atherosclerosis more than statin alone in patients with coronary artery disease // Coron. Artery Dis. 2011 22. P. 352-35.

- 3. Zanchetti A., Ruilope L.M. Antihypertensive treatment in patients with type-2 diabetes mellitus: what guidance from recent controlled randomized trials?// J. Hypertens. 2002 Nov. 20(11). 2099-110
 - 4. http://bestpractice.bmj.com/best-practice/monograph/530.html
- 5. Robles N.R., Romero B., Fernandez-Carbonero E., Sánchez-Casado E., Cubero J.J. Angiotensin-converting enzyme inhibitors versus angiotensin receptor blockers for diabetic nephropathy: a retrospective comparison // Journal of Renin-Angiotensin-Aldosterone System. —2009 Dec. Vol. 10, № 4. 195-200.
- 6. Parmley W.W. Evolution of angiotensin-converting enzyme inhibition in hypertension, heart failure, and vascular protection // Am. J. Med. 1998. 105 (Suppl. 1A). 27S-31S.
- 7. Husain A. The chymase-angiotensin system in humans: editorial review // J. Hypertens. 1993. 11. 1155-9.
- 8. Malacco E., Omboni S., Volpe M. et al. Antihypertensive efficacy and safety of olmesartan medoxomil and ramipril in elderly patients with mild to moderate essential hypertension: the ESPORT study // J. Hypertension. 2010. 28. 2342-50.
- 9. Takagi H., Mizuno Y., Niwa M., Goto S.N., Umemoto T. A metaanalysis of randomized controlled trials of azilsartan therapy for blood pressure reduction // Hypertens. Res. — 2014 May. — 37(5). — 432-7.
- 10. Kipnes M.S., Handley A., Lloyd E., Barger B., Roberts A. Safety, tolerability, and efficacy of azilsartan medoxomil with or without chlorthalidone during and after 8 months of treatment for hypertension // J. Clin. Hypertens. (Greenwich). 2015 Mar. 17(3). 183-92.
- 11. Barrios V., Escobar C. Azilsartan medoxomil in the treatment of hypertension: the definitive angiotensin receptor blocker? // Expert Opin. Pharmacother. 2013 Nov. 14(16). 2249-61.
- 12. Sica D., White W.B., Weber M.A., Bakris G.L., Perez A., Cao C., Handley A., Kupfer S. Comparison of the Novel Angiotensin II Receptor Blocker Azilsartan Medoxomil vs Valsartan by Ambulatory Blood Pressure Monitoring // The Journal of Clinical Hypertension. 2011 July. 13(7). 567-72.
- 13. Bakris G.L., Sica D., Weber M., White W.B., Roberts A., Perez A., Cao C., Kupfer S. The Comparative Effects of Azilsartan Medoxomil and Olmesartan on Ambulatory and Clinic Blood Pressure // The Journal of Clinical Hypertension. 2011 Feb. Vol. 13, № 2.
- 14. Weber M.A., White W.B., Sica D., Bakris G.L., Cao C., Roberts A., Kupfer S. Effects of combining azilsartan medoxomil with amlodipine in patients with stage 2 hypertension // Blood Press. Monit. 2014 Apr. 19(2). 90-7.
- 15. Abdelsaid M., Coucha M., Ergul A. Cerebrovasculoprotective effects of azilsartan medoxomil in diabetes // Transl. Res. 2014 Nov. 164(5). 424-32.
- 16. Nagata R., Kawabe K., Ikeda K. Olmesartan, an angiotensin II receptor blocker, restores cerebral hypoperfusion in elderly patients with hypertension // J. Stroke Cerebrovasc. Dis. 2010 May. 19(3). 236-40. doi: 10.1016/j.jstrokecerebrovasdis.2009.08.004.
- 17. Hye Khan M.A., Neckář J., Cummens B., Wahl G.M., Imig J.D. Azilsartan decreases renal and cardiovascular injury in the spontaneously hypertensive obese rat // Cardiovasc. Drugs Ther. 2014 Aug. 28(4). 313-22.
- 18. Kosaka S., Pelisch N., Rahman M. et al. Effects of angiotensin II AT 1 receptor blockade on high fat diet-induced vascular oxidative stress and endothelial dysfunction in Dahl salt-sensitive rats // J. Pharmacol. Sci. 2013. 121(2). 95-102.
- 19. Takada S., Kinugawa S., Hirabayashi K. et al. Angiotensin II Receptor blocker improves the lowered exercise capacity and impaired mitochondrial function of the skeletal muscle in type 2 diabetic mice // J. Appl. Physiol. 2013, Jan 17.
- 20. Saito I., Kario K., Kushiro T. et al. Rationale, study design, baseline characteristics and blood pressure at 16 weeks in the HONEST study // Hypertens. Res. 2013. 36(2). 177-82.
- 21. Bakris G.L., Sica D., White W.B., Cushman W.C., Weber M.A., Handley A., Song E., Kupfer S. Antihypertensive efficacy of hydrochlorothiazide vs chlorthalidone combined with azilsartan medoxomil//Am. J. Med. 2012 Dec. 125(12). 1229.e1-1229.e10.
- 22. Perry C.M. Azilsartan medoxomil: a review of its use in hypertension // Clin. Drug Investig. 2012, Sep 1. 32(9). 621-39.

Получено 16.03.15 ■