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ABSTRACT

Early renal dysfunction frequently progresses without overt clinical manifestations, limiting opportunities for timely
nephroprotective intervention. Conventional diagnostic indicators, including serum creatinine and estimated glomerular
filtration rate, often reflect renal impairment only after substantial functional loss has occurred. This study evaluated the
role of an artificial intelligence—assisted analytical framework for the early identification of renal dysfunction using
routinely available clinical and laboratory data. A retrospective analytical design was applied to electronic medical records
of adult patients undergoing routine renal evaluation at a tertiary nephrology center. Structured variables encompassing
renal biomarkers, blood pressure measurements, and key comorbid conditions were analyzed through parallel
conventional clinical assessment and Al-assisted risk stratification. The Al-based approach assessed nonlinear interactions
among renal parameters to classify patients into renal risk categories, enabling comparison with standard clinical
classification. The findings demonstrated substantial concordance between Al-assisted and clinician-based risk
assessment, with the Al model exhibiting heightened sensitivity in identifying individuals with moderate and subclinical
renal risk who may be overlooked by fixed threshold—based evaluation. Predictive patterns generated by the model aligned
with established nephropathological mechanisms, supporting clinical interpretability. Overall, the study highlights the
potential of Al-assisted diagnostics to enhance early renal risk detection, refine stratification accuracy, and support
precision-oriented kidney care, while complementing rather than replacing clinical judgment.

KEYWORDS: Early Renal Dysfunction, Artificial Intelligence, Nephrology Diagnostics, Precision Medicine, Kidney
Care.

INTRODUCTION With the currently improved kidney treatment, early

Early renal dysfunction is an acute stage of the natural
history of kidney disease when structural and functional
changes start to occur even before clinical symptoms
appear. Kidney disease keeps increasing all over the
world, and early dysfunction has become a significant
contributor to morbidity and medical expenses in long-
term care in the event of non-diagnosis or improper
management [1]. Modest changes in renal functions
tend to creep up, exposing individuals to cardiovascular
diseases, hospitalization, and eventual kidney failure.
Early diagnosis is hence the focus in preventive
nephrology and renal reserve in the long-term.

kidney malfunction remains a diagnostic problem. The
traditional diagnostic features, like serum creatinine and
estimated  glomerular filtration rate indicate
comparatively late functional alterations and are not
receptive to minor renal harm [2]. The mechanisms of
physiological compensatory actions tend to conceal the
initial loss of nephrons and the diagnosis of the disease
is frequently underestimated. Consequently, not all
individuals are admitted to specialized care of
nephrology until after they have suffered severe and
irreparable damage to their kidneys, and therefore,
nephroprotective measures are not as effective [3].
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Existing diagnostic methods in nephrology are largely
based on the interpretation of laboratory values using
thresholds, which might not be able to elucidate distant
risk pathways in people [4]. The measurement of
albuminuria has been shown to enhance risk
stratification, but has not been implemented in practice
consistently, even in asymptomatic populations. Also,
evidence-based clinical decisions are often made based
on fixed values as opposed to dynamic trends of renal
function variation. These constraints limit the capability
of clinicians to discover high-risk persons at the stage
where disease-modifying approaches would be the most
valuable [5].

Artificial intelligence is becoming more and more
popular in kidney medicine in recent years as a tool for
improving diagnostic accuracy and clinical decision
support. Machine learning methods allow to analyze a
large, multidimensional clinical dataset and identify
latent patterns of the early signs of renal dysfunction that
cannot be observed with standard statistical techniques
[6]. Al-driven systems have demonstrated potential in
imitating the laboratory trend, demographic, and
comorbidity patterns to enhance the detection and
prognostication of diseases in the context of nephrology
[71.

The use of Al is in line with the principles of precision
medicine, which highlights individual risk assessment
and clinical management. In the management of the
kidney, this method facilitates the prompt intervention,
the best monitoring and tailored treatment planning that
targets the disease from progressing [8]. Through the
incorporation of regularly gathered clinical data, Al-
aided models provide a chance to expand the diagnostic
capacity of a nephrologist without bringing invasive or
expensive methods. This prospect is especially
applicable in the case of early renal dysfunction, where
early intervention has a great impact on the final results
[9].

Available sources have reported the viability of Al-
based models in the process of forecasting the
progression of chronic kidney disease and negative
renal outcomes [10]. Nevertheless, numerous studies
have been carried out on the higher stages of disease
progression or even on a subset of patients, which
prevents their generalizability to early detection of
dysfunctions. Moreover, the issues of clinical
interpretability, external validation, and integration into
the daily practice of nephrology have not studied. These
gaps complement the importance of a study with a
strong presence at the early detection stage, with a high
congruence with the practical real-world kidney care
[11].

The current research was aimed at filling these gaps by
assessing an Al-based strategy to detect early renal
dysfunction based on clinical and laboratory data that
can be obtained routinely. The study sought to provide
an improved diagnostic sensitivity at clinically relevant
predictors of nephrology practice by emphasizing early
disease indicators and focusing on clinically relevant
predictors. This strategy will help enhance the
developing role of Al as a supportive tool in kidney
medicine, which will promote evidence-based practice
but not clinical judgment [12].
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Objectives of the Study

1. To evaluate the effectiveness of an Al-assisted
risk stratification approach in identifying early
renal dysfunction using integrated clinical and
laboratory parameters in routine nephrology
practice.

2. To compare Al-based renal risk classification
with conventional clinical assessment in terms
of risk distribution and  diagnostic
concordance.

2. MATERIALS AND METHODS

2.1 Study Design

The study adopted a record-based analytical study
design that entailed a retrospective study design to
assess the renal risk stratification through clinical and
laboratory parameters. The research was based on
organized secondary data retrieved from regularly
stored medical records, which allowed assessing it
under the conditions of real practice with no
interventional interventions. This design allowed
achieving the systematic comparison of traditional
clinical assessment and Al-assisted risk classification.
There was a focus on quantitative variables that apply to
renal functioning and the progression of the disease.
According to the retrospective  framework,
interrelationships among renal biomarkers could be
effectively analyzed without losing the methodological
consistency of the current clinical evaluation practice.

2.2 Data Collection Instrument

A questionnaire was created to obtain clinically relevant
variables of patient records in a structured format. To
maintain a focus on the methods, the instrument was
limited to the parameters that have a direct relationship
with the renal risk assessment. Variables involved in
medical history were hypertension, diabetes mellitus,
and past kidney disease and family history of kidney
disease, which had numerical codes. Behavioral,
lifestyle and socioeconomic variables were not included
in the questionnaire to eliminate confounding factors.
Uniformity of data extraction ensured that across
records, data was extracted consistently and could be
easily integrated into computational processes to be
analyzed later using statistics and Al.

2.3 Clinical and Laboratory Parameters
Variables of clinical and laboratory variables were serum

creatinine, estimated glomerular filtration rate (eGFR),
blood urea, urine protein or albumin status, and blood
pressure. Standardized units were used to record these
parameters to ascertain analytical consistency and eGFR
was estimated using an age/sex-adjusted creatinine-
based equation, which provided the physiological
consistency among renal biomarkers. Indicators of renal
excretory and glomerular functions were included,
which were blood urea levels and proteinuria status.
Measurements of blood pressure were also included due
to their proven role in the progression of the renal
disease.
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2.4 Renal Risk Stratification

There were two parallel methods of classification of
renal risk. Traditional clinical evaluation placed patients
in low, moderate, or high risk as a result of a conjoined
analysis of eGFR, proteinuria, and blood pressure
levels. On its own, an Al-assisted model was able to
categorize renal risk based on the same clinical inputs,
which allowed it to make comparisons free of bias. The
Al model considered non-linear interaction between
biomarkers of renal symptoms and comorbidities to
make risk predictions. This parallel stratification system
allowed to organize the evaluation of Al-assisted
assessment compared to usual clinical judgment in a
systematic way.

2.5 Concordance and Data Analysis
The Python programming language was used for all the

data processing and analyses. The numeric encoding of
variables was done to enable the computational analysis
and reduce interpretive variability. The data set was
edited to ensure the clinical and physiological
concordance of interdependent parameters, especially
between serum creatinine, eGFR and blood urea.
Python-based workflows of analytical procedures were
conducted in order to assess the agreement on Al-
assisted versus conventional clinical risk classifications.
Using this method, diagnostic alignment and Al
performance could be objectively and reproducibly

assessed.
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Figure 1: Flowchart Illustrating the AI-Assisted
Methodological Framework for Early Renal
Dysfunction Risk Stratification

3. RESULTS

3.1 Demographic Characteristics of the Study
Population

The demographic profile of the study population. The
median age of patients was 52.7 10.8 years, with the age
range being between 35 and 70 years, as shown in Table
1. The cohort was composed of 170 (68.0%) male
patients and 80 (32.0%) female patients. The age
distribution showed the prevalence of the middle-aged
and older adults, which is in line with the population at
higher risk of renal dysfunction. This population
stratification gave a suitable clinical environment to
assess the renal biomarkers and the results of risk
stratification.
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Table 1. Demographic Characteristics of the Study
Population (n = 250)

Variable Overall (n =250)
Age (years), mean £+ SD 52.7+10.8
Age range (years) 35-70
Gender — Male, n (%) 170 (68.0)
Gender — Female, n (%) 80 (32.0)

3.2 Clinical History and Comorbidity Profile

Table 2 shows the prevalence of the major renal risk
modifiers. It was noted that 133 patients had
hypertension (53.2%), and 108 patients had diabetes
mellitus (43.2%). A previous kidney disease diagnosis
was found in 90 patients (36.0%), and a family history
of kidney disease was found in 107 patients (42.8%).
These data showed that the population of comorbid
conditions was significant, and they were known to
affect renal functioning, which justified the clinical
applicability of the study population in assessing renal
risks.

Table 2. Prevalence of Clinical History Variables

Clinical Variable n (%)
Hypertension 133 (53.2)
Diabetes mellitus 108 (43.2)
Previous kidney 90 (36.0)
disease
Family history of 107 (42.8)

kidney disease

3.3 Clinical and Laboratory Parameters

Table 3 describes clinical and laboratory results. The
mean serum creatinine was 2.18, and the standard
deviation was 0.79, which was under 2.5, meaning that
the reference range is broad with a wide variation in
renal functioning. The average levels of blood urea were
64.8 + 25.4mg/dl, and the mean blood pressure was
149.6 + 20.8mmHg. High urine protein was found in
103 patients (41.2%). Figure 2 visually proved the
physiological alignment of the inverse relationship
between serum creatinine and eGFR.

Table 3. Clinical and Laboratory Parameters

Mean %
Parameter SD Range
Serum creatinine 2.18 +
(mg/dL) 0.79 0.55-6.00
eGFR (mL/min/1.73 m?) 73:; 8.0-130.0
64.8 + 10.0-
Blood urea (mg/dL) 254 180.0
+
Blood pressure (mmHg) 14;%68 100-200
Elevated urine protein, n
%) 103 (41.2)
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Figure 2: Mean eGFR Across Serum Creatinine
Categories

3.4 Distribution of Renal Risk Categories

The distribution of categories of renal risk based on the
traditional clinical assessment and the use of Al-based
classification is presented in Table 4. Low risk (28.8%),
moderate risk (38.8%), and high risk (81 or 32.4%) were
classified as clinically low, moderate, and high risk,
respectively. The use of Al-based assessment
determined 66 (26.4) patients to be low risk, 112 (44.8)
to be moderate risk and 72 (28.8) to be high risk. Figure
3 shows comparative differences in classification
patterns, with more Al sensitivity to moderate risk.

Table 4. Distribution of Renal Risk Categories

. Clinical Al-Based
Risk
Catesor Assessment n Assessment n
sory (%) (%)
Low risk 72 (28.8) 66 (26.4)
Moderate
risk 97 (38.8) 112 (44.8)
High risk 81(32.4) 72 (28.8)
250
2 200
b
£ 150
s
2 100
£
=
7z 50
0 I

Clinical Renal Risk Category
HLow ®Moderate =High

Figure 3: Clinical Renal Risk Distribution

3.5 Concordance Between Clinical and AI-Based
Assessment

The summary of agreement between traditional clinical
assessment and Al-assisted classification is presented in
Table 5. In 210 (84.0) and 40 (16.0) patients
respectively, concordant and discordant classifications
were made, respectively. The vast majority of the
discrepancies were between risk categories that were
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close to each other, instead of extreme misclassification.
Figure 4 displays the general agreement pattern showing
a high level of agreement between the methods of
diagnosis. These results showed that Al-assisted
assessment was mostly beneficial to clinical judgment,
besides narrowing risks classification among borderline
cases.

Table 4. Distribution of Renal Risk Categories

Risk Clinical Al-Based
Category Assessment n Assessment n
(%) (%)
Low risk 72 (28.8) 66 (26.4)
Moderate 97 (38.8) 112 (44.8)
risk
High risk 81 (32.4) 72 (28.8)
250
= 200
g
g 150
s
St
2 100
£
=
Z 50

,

Assessment Qutcome
H Discordant ® Concordant

Figure 4: Concordance Between Clinical and Al-
Based Assessment

4. DISCUSSION

This research has shown that Al-supported analytical
models improved the detection of renal dysfunction in
standard nephrology care through the exploitation of
minor, clinically significant changes in renal
biomarkers. The findings indicated that early alterations
in renal functioning were better captured with the aid of
Al-based risk stratification, especially by combining the
clinical indicators of serum creatinine, eGFR, blood
urea, proteinuria, and blood pressure. This was the most
pronounced among patients who belong to moderate-
risk groups, as borderline renal impairment might not
arouse immediate alarm when only conventional
assessment is used. The fact that physiological markers
correlated with Al-based classifications indicated that
the chosen analytical scheme was reliable enough to
justify the possible benefits of Al in enhancing the
sensitivity of early diagnosis without interfering with
the well-established clinical routines.

The results also showed that Al-aided risk assessment
was a complement to the traditional clinical judgment,
but not a substitute. Large agreement rates between Al-
based and traditional clinical risk classifications
indicated that the model adhered to the traditional
principles of nephrology and optimized the risk
classification of ambiguous cases. The discrepancies
were mostly limited to the adjacent risk categories and
were signs of the clinically plausible reinterpretation

Kidneys Vol. 15, No. 1, 2026



and not the instability of the algorithm. This conduct
highlighted the explainability and security of Al-
assisted applications in the practice of nephrology as the
system was found to be responsive to combined
biomarker trends as opposed to numerical reference
limits. These properties are critical to guarantee the
clinician confidence and long-term adaptation into the
regular kidney care.

The current results were correlated with the body of
evidence on the application of Al in nephrology
diagnostics when compared with existing literature. The
importance of machine learning in the prediction of the
progression of chronic kidney disease based on
electronic health records has been highlighted in
previous studies [13]. The Al-based models were also
shown to be better at detecting kidney disease at the
ecarly stage than the conventional statistical models [14],
specifically detecting subclinical renal impairment [15].
Risk stratification systems were found to have enhanced
predictive powers in outpatient nephrology groups [16],
whereas longitudinal eGFR trajectory examination
preferred Al-based evaluation approaches [17].
Ensemble learning methods improved the early signs of
kidney disease classification [18], and Al-based
screening in the primary care setting was effective [19].
Other papers emphasized better risk prediction using
albuminuria [20], automated renal risk scoring with ease
[21], better decision support with nephrology centres
[22], and better early referral plans with the help of
predictive analytics [23]. Model robustness was also
supported by multicentre validation studies using
different renal cohorts [24] and Al-based technologies
enhanced the consistency of diagnosis across
institutions [25]. Al models that are precision medicine-
oriented empowered kidney disease prevention methods
[26]. Taken, these results were quite consistent with the
results of the current study, which confirms its topicality
in the current research of nephrology.

Along with these advantages, there were a number of
limitations that should be considered. Retrospective
design was a limitation in the causal inference and
depended on the quality and completeness of available
clinical documentation. Despite the fact that
physiological alignment was achieved by performing
preprocessing of the structured data and derivation of
the dependent variables, the variability present in the
laboratory measurement intervals would have
contributed to the biomarker representations. The data
was based on a small clinical setting, and this may limit
the ability to generalize to larger and more diverse
groups. Moreover, the predictive performance over time
was not possible as the outcome data were not provided
longitudinally, and it was not possible to conclude the
benefits of the disease progression or the survival.
Although interpretability was valued, Al-based
decision-support remained to necessitate tight clinical
supervision to avoid the tendency to rely on the outputs
of the algorithm in more complicated nephrology cases.
Irrespective  of these shortcomings, the clinical
implications of the findings were high. The early
detection of renal dysfunction helped to access
nephroprotective measures in time, to follow up plans
and to plan treatment individually. The presence of Al-
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assisted diagnostics in regular nephrology practice
created the chance of increasing the efficiency of
screening processes, minimizing the time spent on
diagnosing patients, and enhancing the accuracy of risk
stratification. Significantly, the presented performance
features confirmed the idea of Al as an adjunct to the
expertise of clinicians, but not as a substitute. The
balance was consistent with the paradigm shift in kidney
care towards preventive nephrology and precision-
based interventions without clinical responsibility.

The current findings provided current directions for
future research. External validity would be reinforced
by multi-centre validation studies, which would help to
implement it on a broader clinical basis. The
longitudinal follow-up would help in explaining how
Al-aided early detection would change the course of
renal diseases and the rate of progression and patient
outcomes. The development of Al models to assess the
risks of transplantations and postoperative renal
monitoring were the areas of open possibilities. Real-
time clinical decision-support systems integration might
be beneficial in making more responsive nephrology
processes. Further implementation of interpretability
models and long-term participation of clinicians was
also necessary to make sure that Al technologies used in
kidney care are adopted responsibly and efficiently.

5. CONCLUSION

The present investigation reinforces the clinical value of
artificial intelligence—assisted analytical approaches in
strengthening early detection strategies for renal
dysfunction within routine nephrology practice. By
integrating routinely collected clinical and laboratory
parameters, the Al-supported framework demonstrated
an enhanced capacity to identify subtle alterations in
renal function that frequently remain unrecognized
when conventional threshold-based evaluation methods
are applied in isolation. This capability is particularly
relevant in the context of subclinical and moderate-risk
profiles, where early identification plays a decisive role
in delaying disease progression and optimizing long-
term renal outcomes. The observed alignment between
Al-assisted risk stratification and established clinical
assessment highlights the complementary nature of such
technologies. Rather than displacing clinician expertise,
the analytical model functioned as a decision-support
mechanism that refined risk categorization in borderline
cases through multidimensional pattern recognition.
The predictive variables emphasized by the model
reflected known pathophysiological processes of early
kidney  injury, thereby  supporting  clinical
interpretability and reinforcing confidence in its
practical application. From a precision medicine
perspective, Al-assisted renal risk evaluation offers
meaningful opportunities to individualize monitoring
intensity, prioritize preventive interventions, and
allocate nephrology resources more efficiently. The use
of routinely available data further enhances feasibility,
enabling seamless integration into existing clinical
workflows without additional diagnostic burden.
Although broader validation remains necessary, the
findings underscore the potential of Al-driven tools to
improve preventive nephrology strategies and
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strengthen evidence-informed decision-making. Future
efforts should focus on prospective and multicentre
validation, longitudinal outcome assessment, and
continued emphasis on model transparency and ethical
deployment to ensure safe, effective, and sustainable
incorporation of artificial intelligence into standard
kidney care.
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