Огляд

Research

DOI: 10.65327/kidneys.v14i4.569

Ms. Jyoti Patel^{1*}, Dr Ravish Kshatriya², Dr. Ravindra H.N³, Dr. Jesika Rane⁴, Vaibhav Rathore⁵, R Jayasrikrupaa⁶

^{1*}Ph.D. Scholar, Parul University, Limda, Waghodia, Vadodara, 391760, Gujarat, India, Email Id: <u>Jyotisanjaypatel@qmail.com</u>
²Professor & Head, Dept Of Respiratory Medicine, Parul Institute of Medical Sciences & Research, Parul University, Limda, Waghodia,

Vadodara, 3911760, Gujarat, India, Email Id: ravish.kshatriya77891@paruluniversity.ac.in

³Professor, Parul Institute of Nursing, Parul University, Limda, Vadodara Gujarat, 391760, Email Id: ravindra.n59266@paruluniversity.ac.in, Orcid Id: 0000-0001-8579-2075

⁴Associate Professor, Department of Quality assurance, H.L.M.C. College of Pharmacy, Faizpur, Maharashtra, India, Email Id: ranejesika@amail.com, Orcid Id: 0009-0002-2522-0248

⁵Assistant Professor, Department of Pharmaceutics, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad 244001, Uttar Pradesh, India, Email Id: vaibhavsrindia1985@gmail.com

⁶Professor , Department of Oral and Maxillofacial Pathology & Oral Microbiology, Sree Balaji Dental College and Hospital, Bharath Institute of Higher Education & Research, Pallikaranai, Chennai- 600100, TamilNadu, India, Email Id: jayasri.krupaa@amail.com

Artificial Intelligence-Driven Pharmacotherapy Optimization in Chronic Kidney Disease: Bridging Clinical Pharmacology and Urology

For citation: Kidneys. 2025;14(4):01-08. Acceptance- 30/10/2025 Received- 15/10/2025

doi: 10.65327/kidneys.v14i4.569

Abstract

Chronic kidney disease (CKD) poses a constant threat to pharmacotherapy because of variable renal clearance, polypharmacy, and high-risk potential of intoxication with drugs. Although the clinical attentiveness has improved, safe and personalized dosing and especially of patients with interdisciplinary nephrology-urology care needs still have gaps. Artificial intelligence (AI) has become one of the possible ways to improve the precision in therapy, but it has not been widely integrated into clinical practice. The study was a qualitative descriptive study that examined the attitudes of 500 clinicians, nephrologists, urologists, and clinical pharmacologists, towards AI-driven pharmacotherapy optimization in CKD. Semi-structured interview questionnaires were used to collect the data, and it was tabulated in a structured Excel template. Based on the thematic analysis, which was done according to the framework of Braun and Clarke, it was possible to determine some of the major patterns, barriers, and facilitators relevant to the adoption of AI. There were 5 key themes: persistent dosing and polypharmacy issues; urology-related issues in CKD; the desire to use AI to support dosing and prediction and checking interactions, barriers (such as the lack of trust, workflow mismatch, and a lack of transparency), and facilitating factors (including seamless integration of EMR, interdisciplinary collaboration, and mechanisms to check interactions in real-time). Clinicians highlighted the necessity of AI systems to accommodate changes in renal and integrate cross-specialty data. According to the findings, there is a significant clinical need of AI-enhanced pharmacotherapy applications that can positively influence the safety, customization, and interdisciplinary CKD care coordination. These findings are used to develop future transparent, workflow-compatible, and clinically based AI frameworks to optimize medication management in nephrology and urology.

Keywords: Chronic Kidney Disease, Artificial Intelligence, Pharmacotherapy Optimization, Renal Dosing, Interdisciplinary Nephrology–Urology Care

Introduction

Chronic kidney disease (CKD) has become one of the most acute issues of world health where almost 10 percent of the global population and a significant part of morbidity, mortality, and healthcare burden are observed. It may not be noisy in its development, but its consequences are huge, affecting the cardiovascular outcomes, the quality of life, and healthcare spending [1]. As the life expectancy increases and the prevalence rates of diabetes and hypertension rise, more and more

people who undergo complex pharmacotherapy due to CKD emerge. This has aggravated the requirements of safe and evidence-based dosing schedules, monitoring, and interspecialty coordination.

The struggling problem of polypharmacy is a thorny issue that is especially hard to deal with in CKD management. Older individuals with CKD often have to take various drugs to manage related comorbidities of the cardiovascular and metabolic systems, which pose the risk of drug-drug interactions, treatment burden, and

medication errors [2]. Renal impairment also reduces the dosing interval and frequency, which increases the risk of toxicity, so careful dosing and monitoring measures should be taken. Although the pharmacotherapy role in slowing down the CKD progression and alleviating complications is critical, inappropriate prescribing is the renowned factor in the prevention of adverse events. This raises the serious issue of the necessity of therapy optimization strategies that can assist clinicians to overcome the steep therapeutic complexity involved in management of CKD.

The other aspect of CKD management is that it is also interdisciplinary. There is a growing interdependence the nephrologists, urologists, pharmacologists, and primary care units in kidney care. The interdisciplinary models of care have shown better patient outcomes, less fragmentation and better coordination of care, particularly in the value-based kidney care models [3]. Through these developments, communication gaps in real time exist and decisions regarding medication are usually made in silos. Renal functioning is closely overlapped by urological conditions that necessitate treatment plans that consider dynamic physiology, including obstruction uropathy, frequent infections, and surgical complications. However, this does not equate to absence of integrated and responsive decision-support tools that are barriers to ideal co-management across specialties.

Another recognized risk in a CKD patient that is likely to occur is nephrotoxicity that is caused by commonly therapeutic classes such as antibiotics, chemotherapeutic, and analgesic. Such nephrotoxic outcomes may speed up the course of CKD, cause acute kidney disease and complicate the disease courses [4]. Proper renal dosing has been then ensured as an ingredient of safe prescribing. But standard dosing regimens usually do not reflect interpatient variations, variation comorbid renal or interactions. Implementation gaps are rampant even in cases where recommendations medication-specific representative. The clinical decision support systems (CDSS) have tried to overcome some of these issues by helping clinicians with dose adjustment alerts, but they have not succeeded in their effectiveness because of the alert fatigue, poor customizations, and misalignment in the workflow [5].

The latest development in artificial intelligence (AI) provides a potential solution to such gaps by providing data-specific patient-directed therapeutic guidance. AI has also become a force to reckon with in clinical decision-making, with the ability to predictively analyse and recognize patterns and risk stratify automatically [6]. The AI models have proven effective in nephrology to predict the courses of CKD, elevated-risk patients, and individualized management approaches based on multidimensional clinical data [7]. Simultaneously, the innovations in urology demonstrate the potential of AI in identifying the complications earlier and predicting the risks in therapeutic care and making difficult surgical and medical decisions [8]. These changes highlight the overall trend toward AI-oriented precision medicine.

An innovation that is especially applicable in this development is model-informed precision dosing

(MIPD), which allows individualized treatment with drugs by using pharmacodynamics and pharmacokinetic modelling. MIPD systems have demonstrated significant potential in improving the accuracy of dose, eliminating toxicity, and facilitating clinician training in precision therapeutics [9]. The combination of these approaches with AI-based architectures may allow a new period of pharmacotherapy optimization in CKD; one that dynamically responds to the real-time trends of renal function, comorbidity, and drug interactions.

Current data indicate that there is a rapidly increasing tendency in assessing AI in different spheres of the medical industry, one of them being the management of infectious diseases as well as therapeutic decision-making [10]. The developments mentioned indicate more than the growing functionality of AI but also create the need to carefully evaluate and adapt AI to contextual needs before implementing it into daily practice.

In spite of such developments, there still exists a gap in practical implementation of AI-based pharmacotherapy optimization in the CKD. The models in use are usually concentrated on risk prediction not on actionable dosing recommendations, and few of them interdisciplinary views encompassing nephrology, urology, and clinical pharmacology. This highlights the necessity of a study that will provide the insights of clinicians, barriers to implementation, and ways through which AI can be integrated with existing kidney and urology care models. This gap is tackled by the current study by examining the clinician perceptions about the opportunities and obstacles related to AI-based pharmacotherapy optimization in CKD in order to guide the formulation of clinically grounded, interdisciplinary, and user-friendly AI solutions.

Methods Study Design

This paper followed the qualitative descriptive design approach, where the views of clinicians regarding AIcontrolled pharmacotherapy optimization in chronic kidney disease (CKD) were examined. The qualitative descriptive method was selected to produce clinically based and practice-oriented findings that effectively capture experiences of the participants but do not apply theoretical explanations. The aim of the study was to practicality of decision-making, interdisciplinary relationships among nephrology and urology, and artificial intelligence expectations. Semistructured interviews were used to collect the data and a small workshop with experts was used to confirm emerging findings. This open-ended design enabled the consideration of the views of various disciplines and still enabled the qualitative data to remain close to what the clinicians said and how they reasoned clinically.

Participant Selection

The sample was chosen by purposive sampling whereby clinicians actively engaged in CKD care and with pharmacotherapy were targeted. A total of 500 participants comprised the final dataset, and the sample was representative of the various types of nephrologists, urologists with urology experience in relation to CKD, and clinical pharmacologists. The years of experience

(between 1 and 35 years) and specialty were purposely diversified to obtain a broad range of clinical experience. The inclusion criteria included:

- 1. Personal participation in the prescription, adjustment, or recommendation of pharmacotherapy of CKD patients.
- 2. At least two years of clinical practice.
- 3. Skills to discuss inquiries on AI, dosage of medications, and multi-professional management.

The exclusion criteria were clinicians who did not treat CKD patients, were not familiar with the principles of renal pharmacotherapy, or those who were not willing to fill a questionnaire of the interview.

Adequacy in the sample size was determined by use of data saturation which was determined during an ongoing review of the qualitative responses in Excel. Thematic saturation was obtained previously; however, with the involvement of the entire group of 500 clinicians, more depth, variability, and practice-relevant nuances across specialties were obtained, which enhanced the credibility and transferability of the results.

Data Collection

Semi-structured interviews with the help of a standardized question sheet were used to collect the data. In contrast to the audio-recorded qualitative interview, the researchers wrote down the responses of the participants in structured Excel template, specifically created to conduct the study. There were fields in the Excel sheet that are related to every interview question, such as the pharmacotherapy issues, urological factors influencing CKD management, their perceived AI role, obstacles to adoption, facilitators towards implementation, and answers to clinical vignettes.

The semi-structured interview guide contained the following questions:

- Recent issues in CKD pharmacotherapy and monitoring.
- Nephrology and urology crossroads in drug therapy.
- Clinical workflow experiences or expectations of AI.
- Opinions on obstacles and enablers of AI-based tools.
- The perfect characteristics of an AI decision-support system.

Interviews were carried out either face to face or online, as it was preferred by the clinicians and based on their availability. The interviews took between 25 to 60 minutes each, as the dataset indicates. Data collection took place with the aid of the ethical approval, and informed consent was obtained by all the participants. No personal identifiers were kept in the dataset, and the participants were coded based on ID, in order to ensure confidentiality. The expert panel workshop was composed of the chosen nephrologists, urologists, and

clinical pharmacologists who accepted the preliminary results and gave them interpretive feedback.

Data Analysis

The interpretation of responses was performed in a thematic analysis approach, which relied on the six-step framework by Braun and Clarke. The excited notes of the interviews transcribed in the Excel sheet were repeatedly read in order to familiarize oneself with the data and then open coding was performed to identify meaningful units that define clinical experiences or expectations. Axial coding was used to group codes in categories and identify the links between the challenges pharmacotherapy, the dynamics interdisciplinary and the perceptions of AI integration. These categories were then narrowed down to broad themes using selective coding. In order to increase rigor, a number of strategies were favoured to increase trustworthiness:

- Member checking was also done by involving some of the participants who reconsidered the early thematic summaries.
- The concept of triangulation among specialties was done to make sure that multi-disciplinary perspectives were achieved in terms of themes.
- An elaborate audit trail, comprising of coding logs and thematic decisions, was kept in parallel with the Excel data set.

AI Tool/Framework Description

Participants were supplied with a conceptual AI-based pharmacotherapy optimization framework used to be evaluated qualitatively. This theoretical model outlined an electronic decision-support system that had the capability of incorporating the renal functionality, medication history, and patient-specific factors to produce customized treatment suggestions. The participants were also requested to provide their opinions regarding feasibility, utility, transparency, and integration with clinical workflows. Notably, this was strictly qualitative evaluation; there was no predictive modelling, algorithm training or quantitative validation. The dataset provided insights by clinicians to optimize the conceptual aspects of the AI framework.

Results

The sample of the qualitative study was made up of 500 clinicians, which is a diverse, interdisciplinary sample, including nephrology, urology, and clinical pharmacology. The respondents were of a wide age in terms of professional experience having a range of 1 to 35 years with a median of about 16 years old which indicates a wide spectrum of clinical views pertinent to pharmacotherapy of chronic kidney disease [CKD) patients. Table 1 presents the demographics and practice traits of the participants.

Table 1. Participant Demographics and Professional Characteristics

Variable	Categories	n (%)
Specialty	Nephrology	210 (42.0)
	Urology	165 (33.0)
	Clinical Pharmacology	125 (25.0)
Years of Clinical Experience	1–10 years	160 (32.0)
	11–20 years	190 (38.0)
	21–35 years	150 (30.0)
Practice Setting	Public tertiary hospitals	240 (48.0)
	Private hospitals	175 (35.0)
	Teaching institutes	85 (17.0)

A visual representation of specialty distribution is shown in Figure 1.

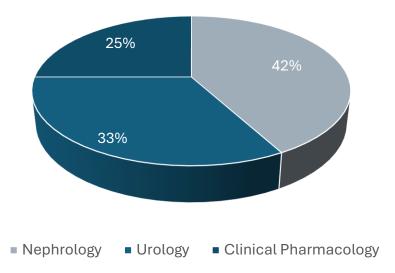


Figure 1. Specialty Distribution of Study Participants

All the interviews were conducted online or face to face, lasting between 25 and 60 minutes and each participant gave their full consent. The thematic analysis allowed identifying five general themes that depict the state of CKD pharmacotherapy, the clinical overlap of nephrology and urology, and the perceived opportunities of artificial intelligence (AI) decision support instruments.

Persistent Challenges in CKD Pharmacotherapy

In all the specialties, the participants have continuously underscored that dose adjustment problems, polypharmacy risk, and frequent concerns of nephrotoxic drugs are issues of concern in the management of CKD. In the dataset, dose adjustment challenges were the most mentioned pharmacotherapy problem, as clinicians had difficulties with the estimates

of renal clearance, interpretation of variable eGFR levels, and the efforts to prescribe drugs based on their individual patterns. Seasoned nephrologists observed that sudden changes in renal functioning, especially in patients of acute-on-chronic kidney damages, bring more doubts to prescription decisions. Polypharmacy turned out to be the similar barrier, especially among older adults with CKD stage 3-5. Clinicians had reported that the interactions of drugs regimens by using antihypertensives, antidiabetics, antibiotics, analgesics tend to produce renal effects in an unpredictable manner. The inability to combine renal functions data, medication history and comorbidity indices into single prescribing recommendations was noted by many players. Table 2 presents the most mentioned pharmacotherapy concerns, the biggest of which is dose-adjustment uncertainty.

Table 2. Major CKD Pharmacotherapy Challenges Reported by Clinicians

Challenge Category	Frequency (n)	Percentage (%)
Dose adjustment uncertainty	432	86.4
Polypharmacy/interaction risks	388	77.6
Nephrotoxic medication burden	365	73.0
Fluctuating renal function	340	68.0
Lack of real-time decision support	295	59.0
Urology-linked renal instability	270	54.0

Urology-Linked Complexities in CKD Care

Although the largest group of specialties was nephrologists, urological concerns were observed to be the most common ones, as the majority of discussions included the following terms as common CKD complications: obstructive uropathy, recurrent UTI, and BPH-related medication interactions. Urologists emphasized that obstructive pathologies frequently lead parameters, which makes varying renal pharmacotherapy particularly questionable in case of antibiotics, alpha-blockers and painkillers. The participants have also reported that some drugs used in urology, including NSAIDs or postoperative analgesics, bring in considerable nephrotoxic effects. These concerns were reinforced by clinical pharmacologists who observed that urological conditions that are associated with the kidney are usually diagnosed late in the therapeutic decision chain thus making it difficult to apply standard dosing guidelines. The dataset shows that the urology-nephrology cross-point in CKD treatment is not only clinically relevant but also lacks the support of the available pharmacotherapy resources.

Opportunities for AI Integration in CKD Pharmacotherapy

One of the main goals of the study was to examine the opinions of clinicians regarding possible solutions created by AI. Some of the most mentioned AI tasks were dose optimization, renal adjusted cautions, and prediction of drug interactions. Most clinicians it envisioned AI systems that would be able to automatically interpret lab values, produce dose-specific recommendations to patients, and predict drug-induced renal issues before they occur in the clinic. The use of AI-based risk stratification dashboards was of great interest among nephrologists, whereas urologists preferred to use automated interaction checkers to facilitate safe prescribing regarding surgical surgeries or frequent infections. It was noted by pharmacologists that real-time decision-support was important; it had the potential to combine pharmacokinetic models and personalized renal data. In all the specialties, participants reported that AI had the potential to develop safer and more individualized CKD treatment trajectories through uncertainty reduction, particularly in more complicated multi-drug regimens. Table 3 summarizes the preferences of clinicians towards real-time and transparent AI tools.

Table 3. Clinician-Identified Desired Features for an AI Pharmacotherapy Tool

Feature	Mention Frequency (n)
Real-time renal dosing calculator	410
Automated nephrotoxicity alerts	385
Drug-drug interaction prediction	360
EMR-integrated workflow	345
Transparent algorithm explanations	315
Trend-based eGFR prediction	298

Barriers to AI Adoption

Nevertheless, a number of significant obstacles were encountered. It was found that the lack of trust, inadequate integration with electronic medical records (EMR), and technical complexity were raised the most. The participants reported that much of the current clinical software applications are discontinuous or even counterclusionary, which interrupts workflow instead of augmenting it. There were some clinicians who showed some concern towards the issue of algorithmic transparency and feared the existence of black box

systems that fail to substantiate their advice. The issue of data privacy was also raised, particularly among clinicians of larger hospital systems where the flow of the patient information traverses many electronic platforms. The urologists and nephrologists expressed their worries regarding the excessive alert fatigue indicating that ill-designed systems can overload clinicians instead of supporting their work. Figure 3 indicates that the major barriers that have been identified by clinicians include.

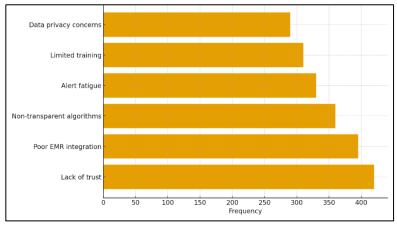


Figure 3. Barriers to AI Adoption

Facilitators and Desired Features for AI Implementation

Successful AI-based transformation also had obvious facilitators made by the participants. The most mentioned enablers included workflow integration, training programs, and transparent algorithms. Clinicians also stressed that AI tools need to be integrated directly into current EMRs and do not need independent platforms. The most frequent recommendation of many respondents was collaborative implementation by interdisciplinary teams of nephrology-urology-pharmacology as a way to enhance adoption as well as clinical accuracy.

The desired features were the real-time dose calculators, EHR-built renal dosing alerts, and patient-specific therapy recommendations. Reactions to clinical vignettes illustrated that AI was believed to have practical utility and many participants stated that the systems would be helpful in increasing the accuracy of decisions and decreasing risk. There was also interest in those systems that could monitor the renal trends and modify drug prescription dynamically by the clinicians. The Figure 1 depicts the thematic map of interdependences between the five emergent themes.

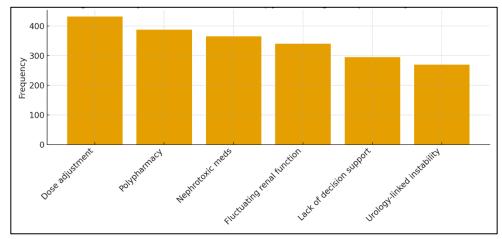


Figure 2. Thematic Map of AI-Driven Pharmacotherapy Optimization

Discussion

The results of this qualitative research indicate the existence of a few gaps in the systemic management of pharmacotherapy of chronic kidney disease (CKD), specifically, related to renal dosing, polypharmacy, lack of interdisciplinary fragmentation, and insufficiency of decision-support facilities. Clinicians always underlined the difficulties connected with the changes in renal parameters, the errors in dose change, and the omnipresent risks of nephrotoxicity caused by drugs in patients with CKD. These issues are consistent with the existing knowledge that incorrect dosing in case of renal dysfunction often results in the negative outcome particularly in geriatric patients and people with comorbidities [12,15]. The focus of the dataset on nephrotoxic drug burden, especially among agents with high-utilization (NSAIDs, antibiotics, and analgesics) is a reflection of previous research that records the role of medication error and accumulation in greatly increasing the risk of acute kidney injury and CKD development [24,25].

These findings and their comparison with the previous AI-driven studies in the field of nephrology indicate that the clinical community is becoming more open to the use of algorithms in decision-making. The enthusiasm of the participants in AI-based dosing support, early risk identification, and real-time notifications closely correspond to the recent technology development in machine learning architecture to predict early acute kidney injury and CKD progression [13,18]. Additionally, the wish to have easily accessible and interpretable AI systems indicates the presence of more

extensive issues that are presented in the literature, with poor explainability and black box algorithms being significant obstacles to clinical implementation [23,28]. Together, the aspects of the qualitative analysis support the idea that AI can help reduce the most important voids in CKD pharmacotherapy, although only when implemented to meet the demands of real-world workflow and interdisciplinary care.

The important implication of this research is the possibility to reinforce individual dosing policies in the case of CKD patients. The participants often emphasized their problems with the adaptation of renally cleared drugs, particularly in patients with unstable renal performance or with patients on complicated drug schedules. It is also repeatedly evidenced that the kidney is the centre of drug excretion and that the slightest changes in the renal functioning can strongly impact pharmacokinetics [21]. Artificial intelligence systems that would be able to incorporate eGFR trends, comorbidity burden, and drug-drug interactions profiles can thus improve personalized dosage prescriptions and decrease avoidable adverse outcomes. This is in line with recent trends in the model-informed precision dosing, which emphasize real-time pharmacokinetic modelling to aid the clinical decision-making process

The other implication is associated with risk mitigation in advance. In the study, clinicians said that several negative consequences were related to the delayed perception of toxicity or rapid renal failure. Early warning models powered by AI have shown high predictive capabilities in identifying high-risk CKD/

AKI patients and can predict these patients prior to their clinical degradation [26,27]. The inclusion of these tools in nephrology practice may lead to a decreased hospitalization without the condition worsening CKD progression, enhanced patient safety due to the possibility of continuous monitoring which is otherwise challenging in busy clinical settings. Also, their combination with the current electronic records might contribute to streamlining the prescribing of the renally eliminated drugs, thus preventing the accumulation of these drugs and enabling safer long-term treatment [14,31].

The results also have significant implications to urology especially to clinicians who are handling CKD patients with obstructive uropathies, frequent urinary infections, or BPH-related complications. Urology can be a significant factor in developing CKD, and the participants of the study often mentioned the obstructive pathologies as the causes of erratic renal performance and changes in dosages. The problems are not new, and obstructive uropathy has been the known causative factor of kidney damage, particularly when it remains untested or untreated [20,22]. Artificial intelligence (AI)-assisted devices to assess levels of obstruction, predict renal recovery and/or pharmacotherapy to use in cases of postoperative or infection-prone patients may increase clinical confidence and patient outcomes substantially.

The other important implication is associated with the decreasing urology-related renal damage. Nephrotoxic is a potential of many urological treatment regimens, especially analgesic and antibiotic therapies. It has been previously established that the renal impairment has close correlations with analgesic usage, which justifies the application of risk-conscious risk-taking in urology contexts (24). Artificial intelligence that creates personalized nephrotoxicity notifications or changes the dosage in response to changing renal status can be used to minimize these risks. In addition, the participants in this study stressed on the relevance of interdisciplinary pathways, which is representative of broader clinical interests of closer nephrology-urology cooperation in the management of the complicated CKD cases [11]. It might offer an integrating platform with shared decisionsupport tools available across specialties.

The interdisciplinary qualitative design of this study is a great strength of the study, as it includes the viewpoints of nephrology, urology, and clinical pharmacology. This heterogenous population gave the opportunity to achieve wide-ranging and integrated insights into CKD pharmacotherapy challenges and expectations of the clinicians toward AI-assisted tools. The methodological rigor and coherence were also improved with the help of a structured data collection template and thematic analysis. Also, the use of an expert panel in terms of interpretive validation enhanced the strength of the emergent themes.

Nonetheless, there are some shortcomings that should be noted. Even though 500 clinicians is a large sample to work with in qualitative studies, the responses were not taped, and this would have resulted in a less in-depth or qualitative response. In addition, the results are based on clinician perceptions and not actual data of

implementation in the real world, which can restrict the generalizability of the findings to other healthcare systems or practice environments [29]. Further research that uses observational or mixed research methodologies would be beneficial in confirming these findings among larger groups of people.

The deployment of AI-based clinical trials for the optimization of real-world dosages, prevention of toxicity, and CKD progression should be the focus of future studies. The algorithm used should be transparent and interpretable in such trials in order to counter the concerns of trust expressed by clinicians over and over [28]. Multi-centre qualitative or mixed-method research would also be required to understand differences among institutions in the prescribing culture, workflow integration, and digital preparedness. Lastly, there should be the application of implementation science frameworks to facilitate the implementation of AI tools in nephrology and urology so that the systems used in clinical decision support are successfully incorporated, ethically controlled, and able to enhance long-term outcomes in renal.

Conclusion

This paper gives a thorough discussion of the views of clinicians on artificial intelligence application in pharmacotherapy optimization in chronic kidney disease. The qualitative data points to the complexity of CKD management that persists in terms of variable renal parameters, excessive polypharmacy, and the threat of drug-induced nephrotoxicity, as the core of therapeutic decisions always remain uncertain. Participants emphasized that current clinical decision support systems and the traditional dosing instructions may not be adopted to the dynamic nature of renal function or the complex needs of patients having nephrological and urological comorbidities. Such constraints enhance the urgency of advanced, adaptive solutions that can convert clinical data into individualized dosing recommendations, which can be put into practice.

AI-driven systems were considered to be very promising in overcoming these issues especially in dose optimization, early risk, and enhancing the safety of renally cleared drugs. Clinicians pointed out that AI can provide a way to integrate the already fragmented information streams and make further harmonized decisions in the field of nephrology, urology, and clinical pharmacology. Nevertheless, the outcomes also depict the presence of serious obstacles that should be considered, such as ambiguity about the transparency of algorithms, their reliability, and the inability to thoroughly incorporate the use of AI tools into the current electronic processes.

The strengths of the research are the interdisciplinary sample and strong thematic analysis, which offers one of the most comprehensive clinician-centered assessments of AI in CKD pharmacotherapy. In the future, one should work towards creating interpretable and clinically validated AI tools, test them in a multi-centre setting, and align with the workflow. Finally, an adequately developed AI system may significantly enhance the

safety of patients, the accuracy of therapy, and crossfunctional teamwork in the treatment of CKD.

References

- 1. Cockwell P, Fisher LA. The global burden of chronic kidney disease. The lancet. 2020 Feb 29;395(10225):662-4.
- Tamargo J, Kjeldsen KP, Delpón E, Semb AG, Cerbai E, Dobrev D, Savarese G, Sulzgruber P, Rosano G, Borghi C, Wassmann S. Facing the challenge of polypharmacy when prescribing for older people with cardiovascular disease. A review by the European Society of Cardiology Working Group on Cardiovascular Pharmacotherapy. European Heart Journal-Cardiovascular Pharmacotherapy. 2022 Jul;8(4):406-19.
- 3. Cahill ML. The Impact of Interdisciplinary Care Teams in Value-Based Kidney Care: Insights from Case Study Reports. Nephrology Nursing Journal. 2024 Sep 1;51(5):413-8.
- 4. Mody H, Ramakrishnan V, Chaar M, Lezeau J, Rump A, Taha K, Lesko L, Ait-Oudhia S. A review on drug-induced nephrotoxicity: pathophysiological mechanisms, drug classes, clinical management, and recent advances in mathematical modeling and simulation approaches. Clinical Pharmacology in Drug Development. 2020 Nov;9(8):896-909.
- 5. Desmedt S, Spinewine A, Jadoul M, Henrard S, Wouters D, Dalleur O. Impact of a clinical decision support system for drug dosage in patients with renal failure. International journal of clinical pharmacy. 2018 Oct;40(5):1225-33.
- 6. Giordano C, Brennan M, Mohamed B, Rashidi P, Modave F, Tighe P. Accessing artificial intelligence for clinical decision-making. Frontiers in digital health. 2021 Jun 25;3:645232.
- 7. Yuan S, Guo L, Xu F. Artificial intelligence in nephrology: predicting CKD progression and personalizing treatment. International Urology and Nephrology. 2025 Nov 8:1-31.
- 8. Shah N, Khalid U, Kavia R, Batura D. Current advances in the use of artificial intelligence in predicting and managing urological complications. International Urology and Nephrology. 2024 Nov;56(11):3427-35.
- 9. Jelliffe R, Liu J, Drusano GL, Martinez MN. Individualized patient care through model-informed precision dosing: reflections on training future practitioners. The AAPS Journal. 2022 Nov 15;24(6):117.
- 10. Alzarea AI, Ishaqui A, Maqsood MB, Alanazi AS, Alsaidan A, Mallhi TH, Kumar N, Imran M, Alshahrani SM, Alhassan H, Alzarea S. Evaluating AI performance in infectious disease education: a comparative analysis of ChatGPT, Google Bard, Perplexity AI, Microsoft Copilot, and Meta AI. Frontiers in Medicine. 2025 Oct 13;12:1679153.
- 11. Chappidi MR, Kates M, Stimson CJ, Bivalacqua TJ, Pierorazio PM. Quantifying nonindex hospital readmissions and care fragmentation after major urological oncology surgeries in a nationally representative sample. *J Urol.* 2017;197(1):235–240.

- 12. Dobrek L. A synopsis of current theories on druginduced nephrotoxicity. *Life*. 2023;13(2):325.
- 13. Dong J, Feng T, Thapa-Chhetry B, Cho BG, Shum T, Inwald DP, Newth CJ, Vaidya VU. Machine learning model for early prediction of acute kidney injury (AKI) in pediatric critical care. *Crit Care*. 2021;25(1):288.
- 14. Erstad BL. Recommended Methods of Drug Dosing Adjustment for Patients with Renal Impairment. *Ann Pharmacother*: 2024;58(9):972–977.
- 15. Fusco S, Garasto S, Corsonello A, et al. Medication-induced nephrotoxicity in older patients. *Curr Drug Metab.* 2016;17(6):608–625.
- 16. Graafsma J, Murphy RM, Van De Garde EM, et al. The use of artificial intelligence to optimize medication alerts generated by clinical decision support systems: a scoping review. *J Am Med Inform* Assoc. 2024;31(6):1411–1422.
- 17. Green JA, Ephraim PL, Hill-Briggs F, et al. Integrated digital health system tools to support decision making and treatment preparation in CKD: the PREPARE NOW study. *Kidney Med.* 2021;3(4):565–575.
- 18. Isaza-Ruget MA, Yomayusa N, González CA, et al. Predicting chronic kidney disease progression with artificial intelligence. *BMC Nephrol*. 2024;25(1):148.
- 19. Jelliffe R, Liu J, Drusano GL, Martinez MN. Individualized patient care through model-informed precision dosing. *AAPS J.* 2022;24(6):117.
- 20. John J. Urology pathways for the primary care physician. *S Afr Med J.* 2024;114(4):9–20.
- 21. Miners JO, Yang X, Knights KM, Zhang L. The role of the kidney in drug elimination. *Clin Pharmacol Ther*. 2017;102(3):436–449.
- 22. Negi S, Koreeda D, Kobayashi S, et al. Acute kidney injury: epidemiology, outcomes, and strategies. *Semin Dial.* 2018;31(5):519–527.
- 23. Pawuś D, Porażko T, Paszkiel S. Automation and decision support in nephrology using artificial intelligence. *IEEE Access*. 2024;12:86043–86066.
- 24. Rexrode KM, Buring JE, Glynn RJ, et al. Analgesic use and renal function in men. *JAMA*. 2001;286(3):315–321.
- 25. Sales GT, Foresto RD. Drug-induced nephrotoxicity. *Rev Assoc Med Bras.* 2020;66:s82–s90.
- 26. Schena FP, Anelli VW, Abbrescia DI, et al. Prediction of chronic kidney disease and its progression by artificial intelligence algorithms. J Nephrol. 2022;35(8):1953–1971.
- 27. Sheer R, Nair R, Pasquale MK, et al. Predictive risk models for severe outcomes in CKD and type 2 diabetes. *J Prim Care Community Health*. 2022;13:21501319211063726.
- 28. Singh P, Goyal L, Mallick DC, et al. Artificial intelligence in nephrology. *Kidney Med*. 2025;7(1):100927.
- 29. Sutaria A, Liu L, Ahmed Z. Polypharmacy and CKD in older adults. *Ther Adv Cardiovasc Dis.* 2016;10(4):242–250.
- 30. Tyson RJ, Park CC, Powell JR, et al. Precision dosing priority criteria. *Front Pharmacol*. 2020;11:420.

- 31. Vogel EA, Billups SJ, Herner SJ, Delate T. Renal drug dosing. *Appl Clin Inform*. 2016;7(3):731–744.
 32. Wu H, Huang J. Drug-induced nephrotoxicity. *Curr Drug Metab*. 2018;19(7):559–567.