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PChN ma znaczący wpływ na zdrowie na świecie. Jest 
przyczyną zarówno zachorowalności, jak i śmiertelności na 
całym świecie, a PChN stanowi poważne obciążenie ekono-
miczne zarówno dla pacjenta, jak i dla kraju [1, 2].

PChN jest poważnym problemem zdrowia publicznego, 
który dotyka 13,4 % dorosłej populacji i powoduje 1,2 mln 
zgonów rocznie [1, 3]. PChN występuje u 12 % ludności 
Ukrainy [4]. W Stanach Zjednoczonych częstość występo-
wania PChN jest znacząca, a około 1 na 7 osób w wieku 
powyżej 30 lat cierpi na PChN. Ponad 800 milionów ludzi 
na całym świecie cierpi na PChN. Częstość występowania 
PChN na świecie wynosi 10–16 % całej populacji. U osób 
starszych sięga 30 % [4]. PChN została uznana za ukrytą epi-
demię [1].

Od 2002 roku termin PChN łączy w sobie różne formy 
nozologiczne z dużym prawdopodobieństwem progresji 
przewlekłego procesu patologicznego w nerkach z później-
szą przewlekłą niewydolnością nerek, która wymaga terapii 
nerkozastępczej (dializa otrzewnowa, hemodializa lub prze-
szczep nerki) [4].

PChN to pogorszenie czynności nerek, które korelu-
je ze wskaźnik filtracji kłębuszkowej (GFR) poniżej 60 ml/
min/1,73  m2 i/lub markerami niewydolności nerek przez co 
najmniej 3 miesiące, charakteryzujące się zmianami struktu-
ralnymi i/lub czynnościowymi nerek zgodnie z dane kliniczne, 
laboratoryjne, instrumentalne, morfologiczne badania, które 
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stanowią podstawę do wykluczenia ostrego procesu patolo-
gicznego w nerkach [1, 4, 6–9] (patrz Tabela 1).

Zaproponowano nowe koncepcje dla PChN:
1. Cukrzycowa choroba nerek = cukrzyca + PChN (daw-

niej nefropatia cukrzycowa (KDOQI, 2007, 2012)).
2. Nadciśnieniowa choroba nerek będąca konsekwencją 

nadciśnienia.
3. Niedokrwienna choroba nerek będąca następstwem roz-

woju miażdżycy [4].
Pacjenci z PChN są podatni na nadciśnienie, choroby ser-

cowo-naczyniowe, zwłóknienia i zaburzenia mineralne. Obec-
nie skuteczną metodą leczenia PChN jest jedynie dializa lub 
przeszczep nerki [5, 10, 11].

Zwłóknienie w PChN zwykle postępuje. Zwłóknienie 
jest uważane za nadmierne nagromadzenie składników 
macierzy tkanki łącznej. Zwłóknienie może wpływać na 
trzustkę, nerki, skórę, płuca, oczy, serce i wątrobę. Jest to 
końcowy patologiczny proces naprawy dezadaptacyjnej, 
charakteryzujący się tworzeniem i akumulacją macierzy 
zewnątrzkomórkowej, głównie w lokalnych komórkach 
mezenchymalnych [11] (patrz Tabela 2).

Komórki mezenchymalne, takie jak fibroblasty i miofibro-
blasty, odgrywają ważną rolę w powstawaniu i rozwoju zwłók-
nienia. Proces ten jest ściśle związany ze stanem zapalnym i 
regeneracją tkanek, które zwykle występują w trakcie i po od-
powiedzi zapalnej i są inicjowane różnego rodzaju uszkodze-
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niami tkanek. Patologiczny proces przebudowy włóknistej jest 
często przyczyną dysfunkcji narządów. Zwłóknienie wiąże się 
z wysoką zachorowalnością i śmiertelnością [11, 12].

W PChN prawie zawsze dochodzi do naruszenia homeo
stazy mineralnej. U ludzi poziom wapnia i fosforu jest utrzy-
mywany przez równowagę między ich odkładaniem w tkance 
kostnej, reabsorpcją w nerkach i wchłanianiem w jelicie [13]. 
Zaburzenia równowagi mineralnej, a mianowicie hiperwita-
minoza D3, hiperkalcemia i hiperfosfatemia, mogą wpływać 
na proces starzenia, co często obserwuje się w przypadku nie-
doboru białka Klotho. Modele zwierzęce wykazały, że utrzy-
manie homeostazy mineralnej poprzez zwiększenie poziomu 
białka Klotho hamuje starzenie się [14, 15].

PChN może być powikłana rzadkim i zagrażającym ży-
ciu zespołem kalcyfilaksji (areriolopatii zwapniowo-mocz-
nicowej), który charakteryzuje się pojawieniem się malych 
zwapnień naczyniowych prowadzących do niedrożności na-
czyń krwionośnych i martwicy tkanek. Termin “kalcyfilaksja” 
został po raz pierwszy użyty przez Hansa Selye w 1961 r., 
rzadki, patologiczny stan, w którym dochodzi do przyśrodko-

wego zwapnienia tętnic i tętniczek, a także proliferacji błony 
wewnętrznej i zwłóknienia [16–18].

Wczesna diagnoza i leczenie to główne środki zapobiega-
jące progresji PChN i opóźniające działania niepożądane. Nie-
dobór wczesnych, nieinwazyjnych biomarkerów niekorzyst-
nie wpływa na zdolność szybkiego wykrywania i leczenia 
PChN. Leczenie PChN we wczesnym stadium może poprawić 
czynność nerek i/lub spowolnić progresję PChN [1].

W praktyce klinicznej zaburzenia czynności nerek nadal 
ocenia się na podstawie stężenia kreatyniny w surowicy, cy-
statyny C i albuminurii oraz wartości GFR, który określa się 
różnymi równaniami. Istnieje nieliniowa korelacja między 
kreatyniną, cystatyną C i GFR: stosunkowo niewielki począt-
kowy wzrost tych markerów definiuje się jako istotny spadek 
GFR [1, 8].

Na przykład około 30 % pacjentów z cukrzycową chorobą 
nerek ma prawidłowy poziom albumin w moczu. Lub może 
być nieobecny w nadciśnieniowej lub cewkowo-śródmiąż-
szowej chorobie nerek. Albuminuria występuje, zanim GFR 
zacznie spadać. Jednocześnie stężenie kreatyniny w surowicy 

Tabela 1. Prognozy PChN na podstawie kategorii GFR i albuminurii: KDIGO 2012

Kategorie trwałej albuminurii

А1 А2 А3

Normalny lub lekko 
podwyższony

Umiarkowanie 
podwyższone Ostro podwyższone

< 30 mg/g;  
< 3 mg/mmol

30–300 mg/g;  
3–30 mg/mmol

> 300 mg/g;  
> 30 mg/mmol
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С1 Normalny lub 
wysoki ≥ 90 Niskie ryzyko* Umiarkowane ryzyko Wysokie ryzyko

С2 Lekko zmniejszona 60–89 Niskie ryzyko Umiarkowane ryzyko Wysokie ryzyko

С3a Umiarkowanie 
zmniejszona 45–59 Umiarkowane ryzyko Wysokie ryzyko Bardzo wysokie ryzyko

C3b Znacznie 
zmniejszona 30–44 Wysokie ryzyko Bardzo wysokie 

ryzyko Bardzo wysokie ryzyko

C4 Zdecydowanie 
zmniejszona 15–29 Bardzo wysokie 

ryzyko
Bardzo wysokie 
ryzyko Bardzo wysokie ryzyko

C5 Niewydolność nerek < 15 Bardzo wysokie 
ryzyko

Bardzo wysokie 
ryzyko Bardzo wysokie ryzyko

Uwaga: * — w przypadku braku innych markerów uszkodzenia nerek lub PChN.

Tabela 2. Szlaki sygnalizacyjne i efekty Klotho w stanach patologicznych [86]

Modyfikacja 
genetyczna/

białko 
rozpuszczalne

Zwierzęta 
eksperymen-

talne

In 
vitro/in 

vivo

Choroba/stan 
patologiczny

Ścieżki sygnałowe 
zaangażowane w 
realizację efektu

Uzyskane efekty

1 2 3 4 5 6

Białko rozpusz-
czalne Myszy In vivo

Apoptoza wywo-
łana stresem w 
kardiomiocytach-
Hamowanie p38, 
JNK

Hamowanie p38, JNKHa-
mowanie stresu i apopto-
zy retikulum endoplazma-
tycznego

Hamowanie stresu i 
apoptozy retikulum 
endoplazmatycznego

Białko rozpusz-
czalne Myszy In vivo

Zahamowanie 
kanału wapnio-
wego, TRPC6, 
FGFR1

Zahamowanie kanału 
wapniowego, TRPC6, 
FGFR1

 Zapobieganie prze-
rostom, normalizacja 
ciśnienia krwi 
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Zakończenie tabela 2

1 2 3 4 5 6

Białko rozpusz-
czalne

Myszy, ko-
mórki H9c2 
і neonatalne 
kardiomiocyty

In vivo, 
in vitro 

Uszkodzenie 
mięśnia sercowe-
go spowodowane 
hiperglikemią

Zahamowanie zwłóknie-
nia, stresu oksydacyjnego, 
dysfunkcji mitochondriów 
i zahamowanie stanu 
zapalnego wywołanego 
aktywacją NF-κB i ROS

Zapobieganie uszko-
dzeniom mięśnia 
sercowego

Białko rozpusz-
czalne

Myszy db/
db (model 
cukrzycy typu 
2)

In vivo

Wysokie ciśnie-
nie skurczowe, 
zwłóknienie i 
przerost nerek, 
hiperglikemia

Wzmocniona ekspresja 
Klotho i dysmutazy ponad-
tlenkowej, zahamowanie 
ekspresji fibronektyny, HIF, 
TGF-β1 i TNF-α, fosforyla-
cja nerkowa mTOR i Akt

Zapobieganie zwłók-
nieniu nerek i normali-
zacja ciśnienia krwi

Białko rozpusz-
czalne

Myszy db/
db (model 
cukrzycy typu 
2) 

In vivo Hiperglikemia

Częściowa normali-
zacja poziomu cukru, 
zwiększone wydziela-
nie insuliny

Białko rozpusz-
czalne Myszy In vivo

Cukrzyca wywo-
łana streptozoto-
cyną

Zapobieganie apop-
tozie komórek beta 
trzustki 

Białko rozpusz-
czalne Myszy db/db In vivo Cukrzyca Niedoborowi Klotho towa-

rzyszy aktywacja NF-κB

Niedoborowi Klotho 
towarzyszą procesy 
zapalne w nerkach 

Białko rozpusz-
czalne/Domena 
KL1

Myszy z 
niedoborem 
odporności 
nude

In vivo, 
in vitro 

Rak piersi u czło-
wieka

Hamowanie wiązania 
IGF-1 z jego receptorem

Hamuje rozwój 
nowotworów in vivo 
oraz wzrost komórek 
rakowych w hodowli

Białko rozpusz-
czalne/Domena 
KL1

Myszy In vivo, 
in vitro Rak trzustki Modulacja szlaków sygna-

łowych bFGF i IGF-I

Hamuje proliferację 
komórek nowotworo-
wych  in vitro

Modyfikacja gene-
tycznaszczur Szczur In vivo

Cukrzyca wywo-
łana streptozoto-
cyną

Hamowanie kinazy typu 
coiled-coil związanej z 
Rho

Zapobiega zwłóknieniu 
nerki, przerost nerek

Modyfikacja gene-
tyczna Myszy In vivo Demielinizacja Zahamowanie Akt i ERK Intensyfikacja remieli-

nizacji

Modyfikacja gene-
tyczna Myszy In vivo

Zaburzenia 
funkcji poznaw-
czych, aktywność 
padaczkowa

Zwiększa ekspresję 
GluN2B podjednostek 
NMDA-receptory

Zmniejszenie często-
ści napadów padacz-
kowych, zwiększenie 
pamięci przestrzennej

Modyfikacja gene-
tyczna/transfekcja

Ludzkie 
komórki me-
zangialne

In vitro Hiperglikemia
Hamowanie szlaku sy-
gnałowego Egr-1, TGFβ1/
SMAD3 

Hamuje procesy 
zwłóknieniowe

Uwagi: p38 — kinaza białkowa aktywowana mitogenami; JNK — kinaza N-końcowa c-Jun; GluN2B — jonotropowy 
receptor glutaminianu (NMDA 2B); NMDA — N-metylo-D-asparaginian; Akt — kinaza białkowa B; ERK — kinaza 
regulowana sygnałem zewnątrzkomórkowym; IGF-1 — insulinopodobny czynnik wzrostu 1; bFGF — podstawo-
wy czynnik wzrostu fibroblastów; Egr-1 — czynnik transkrypcyjny wczesnej reakcji wzrostu-1; SMAD3 — matka 
przeciwko dekapentaplegicznemu homologowi 3; NF-κB — jądrowy czynnik kappa B; HIF — czynnik indukowany 
hipoksją 1; TGF-β1 — transformujący czynnik wzrostu beta 1; TNF-α — czynnik martwicy nowotworu alfa; mTOR — 
mechaniczny cel rapamycyny; ROS — reaktywne formy tlenu; TRPC6 — kanoniczny przejściowego potencjał re-
ceptora 6; FGFR1 — czynnika wzrostu fibroblastów 1receptory; КL — domena zewnątrzkomórkowa białka α-Klotho.

GFR, ml/min/1.73 m2
Markery uszkodzenia nerek

Jest Nie

≥ 90 PChN Norma

60–89 PChN Grupa ryzyka

< 60 PChN PChN

Tabela 3. Rozpoznanie PChN w zależności od obecności markerów uszkodzenia i stanu funkcjonalnego nerek 
(E.M. Shilov, 2012)
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zaczyna wzrastać przy uszkodzeniu około 40–50 % miąższu 
nerki [1].

Dlatego diagnoza wczesnych stadiów PChN nie jest wy-
starczająco skuteczna. Istnieje kilka alternatywnych marke-
rów, a mianowicie β2-mikroglobulina, KIM-1 (cząsteczka 
uszkodzenia nerek-1), NGAL (lipokalina połączona z neutro-
filami) i L-FABP (białko wiążące kwasy tłuszczowe wątroby) 
[1, 9, 19–31].

Zmiany w cewkach proksymalnych odgrywają ważną 
rolę w progresji PChN [1]. Dlatego największym zaintereso-
waniem cieszą się markery kanalików proksymalnych nerek. 
Oprócz KIM-1, NGAL i L-FABP istnieją mniej zbadane mar-
kery, takie jak UMOD, białko Klotho i potranslacyjne modyfi-
kacje FtA (patrz Tabela 3).

Co wiemy o tych markerach?
UMOD. Istnieją dowody na to, że białko to zostało po raz 

pierwszy opisane przez Carlo Rovida w 1873 roku [32]. Ale 
naukowo, białko Tamma-Horsvall zostało odkryte przez Hor-
svalla i Tammę w 1950 roku, kiedy badanie hemaglutynacji 
wirusa w moczu ujawniło białko, które hamuje hemeglutyna-
cję wirusa. W 1985 roku została ponownie odkryta przez Dec-
kera i Muchmore’a jako glikoproteina immunomodulująca, 
aw 1987 roku Pennica i in. zidentyfikowali pierwotną struktu-
rę UMOD, która wykazała, że UMOD jest podobny do białka 
Tamm-Horsfall [33–36].

Jest to najczęstsze białko w moczu zdrowej osoby. UMOD 
to białko kwaśne o masie 90 kDa, które posiada niski punkt 
izoelektryczny (pI 5,00). Syntetyzowana jest wyłącznie przez 
nabłonek wyściełający grube ramię wstępujące pętli Henlego 
i kanaliki dystalne [33, 35–41]. UMOD bierze udział w regu-
lacji systemów transportu wierzchołkowego, w grube ramię 
wstępujące pętli Henlego oraz w początkowym odcinku dy-
stalnego krętego kanalika nerki, wpływając na reabsorpcję soli 
[33, 35, 38, 42–44].

Przeważająca ilość UMOD jest wydalana z moczem, eks-
presja UMOD w tkance śródmiąższowej nerek jest znikoma 
[36, 45, 46]. W świetle układu moczowego monomery UMOD 
tworzą homopolimerowe włókna, które agregują i otaczają 
uropatogeny (włókniste Escherichia coli typu 1) i są wydalane 
z moczem [33]. UMOD jest ważnym białkiem regulatorowym 
odporności wrodzonej, które może wiązać fragmenty dopeł-
niacza [47–50].

UMOD jest strukturalnie homopolimerową glikoprote-
iną, która zapobiega adhezji patogenu bakteryjnego. Moduł 
C-końcowy strefy przezroczystej UMOD pośredniczy w jej 
polimeryzacji. Brak szczegółowych informacji o N-końcowej 
części gałęzi UMOD. Przyjmuje się, że ma domenę z ośmio-
ma cysteinami [51, 52].

Oprócz klasycznego uwalniania dowierzchołkowego, 
UMOD w mniejszym stopniu wchodzi do podstawno-bocznej 
domeny komórek nabłonka kanalików, skąd jest uwalniany do 
tkanki śródmiąższowej, a stamtąd do krwiobiegu [36, 38, 53, 
54]. Krążąca forma UMOD jest głównie monomeryczna, jak 
przedstawili Micanovic i in. (patrz rys. 1).

Stężenie UMOD w surowicy w porównaniu z moczem jest 
znacznie niższe (odpowiednio 20–50 ng/ml vs 20–50 mcg/ml) 
[36]. UMOD w surowicy (sUmod) może odzwierciedlać masę 
funkcjonalną nefronu [38, 55, 56]. W krążącym UMOD wy-

stępuje liniowa korelacja z GFR u pacjentów z PChN, co może 
pomóc w rozpoznaniu wczesnych stadiów uszkodzenia nerek, 
gdy stężenie kreatyniny nadal mieści się w granicach nor-
my [38, 57–61]. Według badań naukowych okres półtrwania 
UMOD z moczem wynosi około 16 godzin, ale zakres wahań 
jest duży, od 3 godzin do 7 dni [38]. Hepsyna odgrywa ważną 
rolę w polimeryzacji i przetwarzaniu UMOD [44].

UMOD to wielofunkcyjne białko, które odgrywa ważną 
rolę nie tylko w utrzymaniu homeostazy układu moczowe-
go, ale również układowego. Sugeruje się, że UMOD jest 
kolejnym hormonopodobnym peptydem, który tworzy ogól-
noustrojową odporność i równowagę sygnałów zapalnych, a 
także działa jako regulator stresu oksydacyjnego [36, 38, 62, 
63]. Ostatnie badania in vitro wykazały, że UMOD hamuje 
czynność monocytów, hemaglutynację wirusa i proliferację 
komórek T zależną od antygenu [64]. Bierze udział w regu-
lacji chemotaksji, fagocytozy i apoptozy, pozytywnie wpływa 
na migrację przeznabłonkową neutrofili (poprzez specyficzne 
receptory na powierzchni komórki) [64, 65].

Badania sugerują, że UMOD bierze udział w ochronie dróg 
moczowych przed infekcjami i tworzeniem kamieni [66–68], 
w regulacji transportu soli, w uszkodzeniu nerek i odporno-
ści wrodzonej [41, 69–71]. Rzadkie mutacje zmiany sensu w 
genie UMOD są najczęstszą przyczyną autosomalnej domi-
nującej choroby kanalikowo-śródmiąższowej nerek, charakte-
ryzującej się uszkodzeniem kanalików i rozwojem zwłóknie-
nia śródmiąższowego oraz brakiem uszkodzenia kłębuszków 
nerkowych, z rozwojem niewydolności nerek. Mechanizm 
uszkodzenia i rozwoju zwłóknienia jest związany z akumula-
cją wewnątrzkomórkowych agregatów zmutowanego UMOD 
w grube ramię wstępujące pętli Henlego [33, 36, 40, 72–76].

W świetle kanalików UMOD tworzy nici o wysokiej ma-
sie cząsteczkowej, które są częścią cylindrów hialinowych. 
UMOD jest podatny na zwiększoną glikację (do 30–40 % swo-
jej masy cząsteczkowej). Zmiany strukturalne i funkcjonalne 
białka mogą powodować choroby nerek i dróg moczowych. 
Zmiana profilu glikozylacji UMOD czyni go potencjalnym 
biomarkerem zdrowia nerek [36, 77–80]. Poziomy UMOD w 
moczu i surowicy odzwierciedlają liczbę nienaruszonych ne-
fronów [38].

Białko Klotho. Profesor Makoto Kuro-O wraz z grupą na-
ukowców odkrył w 1997 roku gen Klotho, który spowalnia 
starzenie się. Został nazwany na cześć bogini starożytnej mi-
tologii greckiej, która zakręciła nić życia. Rok później Y. Mat-
sumura i in. na chromosomie 13q12 u ludzi zidentyfikowano 
gen α-Klotho [15, 81, 82].

Badania wykazały, że wymodelowany nadekspresja genu 
Klotho hamuje fenotypowe objawy starzenia i wydłuża ocze-
kiwaną długość życia. Gen Klotho jest jednym z genów „prze-
ciwstarzeniowych” [82, 83].

Później odkryto, że białko Klotho ma trzy izoformy α, 
β i γ [84, 85]. Chromosom 4 zawiera niekompletną kopię 
genu Klotho o podobnej sekwencji nukleotydowej zwanej 
β-Klotho [82].

Gen β-Klotho koduje jednoprzejściowe białko transbło-
nowe, które jest wyrażane głównie w trzustce, białej tkance 
tłuszczowej i wątrobie i jest zaangażowane w regulację syn-
tezy kwasów żółciowych z czynnikiem wzrostu fibroblastów 
(FGF) [82]. γ-Klotho (clotho/laktaza-florizyna) to białko po-
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dobne do laktozy występujące w nerkach, brunatnej tkance 
tłuszczowej i strukturach oka. Funkcja białka γ-Klotho jest 
nadal niejasna [85, 86].

Gen Klotho ulega ekspresji głównie w dystalnych kanali-
kach krętych nerek i komórkach nabłonka splotu naczyniowe-
go mózgu. Gen ten jest określany w innych narządach, ale w 
niskich stężeniach [15].

Komórki z ekspresją genu Klotho: nabłonek kanalików 
dystalnych nerek, komórki nabłonka splotu naczyniowego, a 
także komórki przysadki, okrężnicy i jelita cienkiego, przy-
tarczyc trzustki, łożysko, serce, aorta, pęcherza moczowego, 
prostaty, mięśni szkieletowych, jajnika i jądra [15, 82].

Gen Klotho ma 5 eksonów, 4 introny i koduje białko Klo-
tho, które ma dwie formy, wydzielniczą i transbłonową [82, 
87]. Dwa transkrypty powstają w wyniku alternatywnego 
splicingu RNA, który koduje wydzielniczą i błonową formę 
białka Klotho [15].

Błonna forma białka Klotho ma domeny transbłonowe, 
wewnątrzkomórkowe i zewnątrzkomórkowe. Metaloproteina-
zy macierzy z rodziny ADAM (A Disintegrin And Metallopro-
teinase) rozszczepiają 10 i 17 domen zewnątrzkomórkowych, 
które wchodzą do przestrzeni zewnątrzkomórkowej. Jest to 
rozpuszczalna forma białka Klotho [15].

Gen Klotho koduje peptyd transbłonowy Klotho, który jest 
niezbędnym koreceptorem dla FGF-23, hormonu niezbędnego 
do regulacji parathormonu, fosforu i witaminy D [83, 88]. Po-
przez stymulację wydalania fosforanów przez nerki i redukcję 
dihydroksywitaminy D3 w surowicy, Klotho indukuje ujemny 
bilans fosforanowy [84, 89, 90].

Istnieje 3 członków rodziny Klotho: białka transbłonowe 
o różnej długości. Rozpuszczalne formy Klotho można otrzy-
mać przez proteolityczne rozszczepienie formy przezbłonowej 
przez β-sekretazy [91].

U ludzi postać transbło-
nowa białka Klotho znajdu-
je się w błonie komórkowej 
i aparacie Golgiego, składa 
się z 1012 aminokwasów, ma 
masę cząsteczkową ~ 130 kDa 
i obejmuje 3 domeny: domenę 
zewnątrzkomórkową i domenę 
transbłonową z krótką domeną 
cytoplazmatyczną przy C-ko-
niec i ma sekwencję sygnałową 
na N-końcu [82, 91]. Domena 
zewnątrzkomórkowa ma dwa 
regiony wewnętrznych powtó-
rzeń (KL1 i KL2) homologicz-
nych sekwencji β-glukozydazy 
o koincydencji sekwencji od 20 
do 40 %, krótka domena we-
wnątrzkomórkowa ma długość 
10 aminokwasów [82, 91].

Zasugerowano, że miejsce 
zaangażowane w rozszczepia-
nie przezbłonowe znajduje się 
pomiędzy miejscami KL1 i 
KL2. U ludzi dominuje sekre-
cyjna forma białka, która składa 

się z 549 aminokwasów. Forma wydzielnicza jest krążącym 
czynnikiem humoralnym [82] (patrz rys. 2).

Badania wykazały, że u osób dorosłych w wieku 20 lat 
i starszych stężenie białka Klotho w surowicy wahało się od 
239 do 1266 pg/ml [15].

Sugerowano, że białko Klotho hamuje starzenie się po-
przez hamowanie szlaku sygnałowego wewnątrzkomórko-
wego insulina/insulinopodobny czynnik wzrostu 1. Redukcja 
stresu oksydacyjnego wraz ze wzrostem poziomu białka Klo-
tho, ze względu na hamowanie szlaku p53/p21, jest mechani-
zmem spowalniającym starzenie się i onkogenezę [15, 92, 93].

Istnieje kilka potencjalnych mechanizmów, które przy-
czyniają się do działania przeciwwłóknieniowego Klotho w 
CKD, takich jak hamowanie wewnątrzkomórkowej sygnali-
zacji Wnt, FGF23 i transformujący czynnik wzrostu (TGF-β) 
[5, 11, 94–97].

Największą jego ekspresję obserwuje się w dystalnych 
kanalikach nerek [88]. Poziomy krążącego Klotho (rozpusz-
czalny α-Klotho) są spowodowane zewnątrzkomórkową do-
meną białka Klotho i uważa się, że jest zastępczym markerem 
ekspresji Klotho w nerkach i funkcjonalnej liczby nefronów 
[83, 88].

Rozpuszczalny Klotho wpływa na funkcję śródbłonka, 
stres oksydacyjny, starzenie się i apoptozę komórek [88]. U 
pacjentów z PChN, chorobą wieńcową i cukrzycą zgłaszano 
zmniejszoną ekspresję genu Klotho i wydzielanie białka Klo-
tho [82]. Poziom białka serwatkowego Klotho spada wraz z 
wiekiem [15].

FtA. Pedersen po raz pierwszy opisał FtA w 1944 roku 
i nadał mu nazwę od łacińskiego słowa fetus ze względu 
na jego wysoką zawartość w płodowej surowicy cielęcej 
[98]. Później w 1961 Schmidt, Heremans i Burgess od-
kryli wielofunkcyjną fosforylowaną glikoproteinę (znaną 

Rysunek 1



http://kidneys.zaslavsky.com.ua 73Vol. 11, No. 2, 2022

Запрошені статті  /  Guest Articles

Rysunek 2

Rysunek 3



74 , ISSN 2307-1257 (print), ISSN 2307-1265 (online) Vol. 11, No. 2, 2022

Запрошені статті  /  Guest Articles

również jako Alpha-2-Geremans-Schmid) [99–102].  
Jest to białko składające się z długiego łańcucha A (282 ami-
nokwasy) i krótkiego łańcucha B (27 aminokwasów) połą-
czonych krótkim łańcuchem 40 aminokwasów i ważącym od 
52 do 60 kDa [99, 101–103].

Podczas rozwoju płodowego ekspresja FtA jest wykrywa-
na we wszystkich głównych narządach i splocie naczyniowym 
[98, 99]. W surowicy stężenie FtA waha się od 0,4 do 1,0 g/l 
[98, 100]. FtA jest syntetyzowany głównie (> 95 %) w wątro-
bie (tzw. hepatokin), może być syntetyzowany w nerkach, gro-
madzi się w dużych ilościach w zwapniałych kościach, krwi i 
płynie mózgowo-rdzeniowym [98, 99, 103].

FtA ma wpływ na homeostazę energetyczną, wzrost ko-
mórek, adipocyty i stan zapalny (może być białkiem ostrej 
fazy zarówno dodatnim, jak i ujemnym), oddziałuje z recep-
torem insuliny poprzez hamowanie jego kinazy tyrozynowej 
[99, 100, 104–113]. Jest pośrednim regulatorem stanu zapal-
nego, zwapnienia, polaryzacji makrofagów i zwłóknienia w 
tkankach [98, 108, 114–119].

Pod koniec lat 70. LeBreton i współpracownicy odkryli, że 
FtA jest jednym z głównych białek negatywnych w ostrej fa-
zie. Pojawienie się krótkich izoform czynnika transkrypcyjne-
go C/EBP, które nie mogą utrzymać podstawowej aktywności 
promotora wątrobowego w porównaniu z długimi izoformami 
C/EBP, które dominują w hepatocytach w spoczynku [98].

Zajmuje ważne miejsce w prewencji litogenezy nerek i 
choroby wieńcowej poprzez hamowanie nadmiernej minera-
lizacji [99, 120–124]. FtA dzięki swojej zdolności do hamo-
wania apoptozy i nasilania fagocytozy reszt apoptotycznych 
zmniejsza stres mineralizacyjny [98, 125–128].

FtA jest również białkiem transportowym dla fosforanów i 
wapnia, które odgrywa ważną rolę w mineralizacji kości, po-
przez łączenie malych klastrów fosforanów i wapnia, zapo-
biegając w ten sposób ich wzrostowi, agregacji i wytrącanie 
minerałów, zapobiegając wchłanianiu przez komórki tych roz-
puszczalnych koloidów białkowo-mineralnych które są znane 
jako cząstki kalcyproteinowe (składające się z monomerów 
kalcyproteinowych) [98, 104, 105, 129–133].

Miejsce wiązania minerału w FtA znajduje się w N-koń-
cowej domenie cystatynowej CY1 [98]. Małe kompleksy fos-
foranu wapnia (klastry Posnera) są lepszym ligandem FtA niż 
wapń jonowy [98]. Badania in vivo i in vitro wykazały bezpo-
średni wpływ podwyższonego poziomu fosforanów na funk-
cję śródbłonka [134].

Dla nasyconych kwasów tłuszczowych FtA jest białkiem 
adaptorowym (ligandem endogennym), za pomocą którego 
aktywują receptor Toll-podobny 4 [105, 108]. FtA odgrywa 
ważną rolę w wiązaniu minerałów, lektyn (w tym galekty-
ny-3) [108, 135–137] i lipidów, bierze udział w hamowaniu 
transmisji sygnału β-czynnik wzrostu i antonizacji receptorów 
insuliny [98, 108, 138]. FtA jest niezbędnym kofaktorem w 
hamowaniu ekspresji prozapalnej cytokiny, czynnika martwi-
cy nowotworu wraz ze spermidyną, aktywując akumulację 
triacyloglicerolu i NF-κB [98, 108] (patrz rys. 3).

FtA, jak również Fetuina-B, która jest bogaty w histydynę, 
kininogen i glikoproteinę, należy do rodziny cystatyn typu 3, 
która jest inhibitorem peptydazy cysteinowej [98]. Do tej pory 
nie zidentyfikowano żadnej specyficznej docelowej peptydazy 
dla FtA [98].

FtA podlega istotnym modyfikacjom potranslacyjnym, 
które obejmują obróbkę proteolityczną od jednołańcuchowego 
prekursora do krążącego kompleksu dwułańcuchowego biał-
ka, N- i O-glikozylację, zasiarczenie i fosforylację treoniny i 
seryny, co wpływa na jego aktywność i stabilność [98, 101].

Wnioski
Są istotne jest wczesne rozpoznanie PChN, identyfikacja 

pacjentów, u których może dojść do schyłkowej niewydol-
ności nerek. Wskaźniki, w tym kreatynina, szacowany GFR i 
białkomocz, nie w pełni odpowiadają potrzebom klinicznym. 
Dlatego potrzebne są nowe biomarkery do oceny progresji 
PChN. I nie jeden biomarker, ale połączenie różnych biomar-
kerów. Tak więc, jak widzimy, markery uszkodzenia nerek ta-
kie jak UMOD, białko Klotho, FtA są dziś istotne i to nie tylko 
dla wczesnej diagnozy, mogą być podstawą do opracowania 
nowych leków w nefrologii do leczenia pacjentów z PChN, w 
tym, i nefropatia cukrzycowa. Te biomarkery charakteryzują 
się wykrywaniem wczesnych uszkodzeń i lokalizacją uszko-
dzeń. To pozwala nam ocenić dalszą progresję PChN, nasile-
nie i śmiertelność [140].
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Денова Л.Д.
Національний університет охорони здоров’я України імені П.Л. Шупика, м. Київ, Україна

Значення протеомних досліджень новітніх маркерів ураження нирок у сечі для оцінки перебігу,  
прогресування й ускладнень у пацієнтів із ХХН

Резюме. Хронічна хвороба нирок (ХХН) є причиною як за-
хворюваності, так і смертності в усьому світі. В Україні ХХН 
виявляють у 12 % населення. Суттєво погіршують якість життя 
у пацієнтів із ХХН прогресування фіброзу нирок і порушення 
мінерального гомеостазу. Основними заходами запобігання 
прогресуванню ХХН і відстрочення несприятливих наслідків є 
рання діагностика й лікування. Дефіцит ранніх, неінвазивних 
біомаркерів негативно впливає на здатність швидко виявляти 

й лікувати ХХН. У прогресуванні ХХН важливу роль відіграє 
ураження проксимальних канальців. Є новітні маркери уражен-
ня нирок, такі як уромодулін, білок Klotho і посттрансляційні 
модифікації фетуїну А. Лікування ХХН на ранніх стадіях може 
покращити функцію нирок і/або сповільнити прогресування 
ХХН.
Ключові слова: хронічна хвороба нирок; гіперфосфатемія; 
уромодулін; протеїн Klotho; фетуїн А
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The value of proteomic studies of the latest markers of kidney damage in the urine to assess the course,  
progression and complications in patients with CKD

Abstract. Сhronic kidney Disease (CKD) is the cause of both mor-
bidity and mortality worldwide. In Ukraine, 12 % of the population is 
diagnosed with CKD. Significantly worsen the quality of life in patients 
with CKD progression of renal fibrosis and impaired mineral homeo-
stasis. Early diagnosis and treatment are the main measures to pre-
vent CKD progression and delay adverse effects. Deficiency of early, 
non-invasive biomarkers adversely affects the ability to rapidly detect 

and treat CKD. Proximal tubular lesions play an important role in the 
progression of CKD. There are new markers of kidney damage, such 
as uromodulin, Klotho protein and post-translational modifications of 
fetuin A. Treatment of CKD in the early stages may improve renal func-
tion and/or slow the progression of CKD.
Keywords: chronic kidney disease; hyperphosphatemia; uromodu-
lin; Klotho protein; fetuin A
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Біомаркери ХХН
Уромодулін Білок Клото Фетуїн А

Синтезується виключно епітелієм 
товстого висхідного відділу петлі 

Генле.

Синтезується переважно в дис-
тальних звивистих канальцях нирок 
та епітеліальних клітинах судинного 

сплетення в головному мозку.

Синтезується переважно  
(понад 95 %) у печінці й нирках.

Для цих біомаркерів характерне виявлення ранніх пошкоджень, локалізації пошкодження. Дають оцінку 
щодо подальшого прогресування захворювання, тяжкості й смерті.

Biomarkery PChN
Uromodulina Białko Klotho Fetuina A

Syntetyzowany wyłączne przez 
uroepitelium gruba wznosząca się 

część pętli Henlego.

Syntetyzowany glównie w 
dystalnych kanalikach krętych 

nerek i komórkach nabłonka splotu 
naczyniowogo w mózgu.

Syntetyzowany głównie  
(ponad 95 %) w wątrobie i nerkach.

Te biomarkery charakteryzują się wykrywaniem wczesnych uszkodzeń, lokalizacją uszkodzeń. Oceń dalszy 
postęp choroby, nasilenie i śmiertelność.

Biomarkers of CKD
Uromodulin Klotho protein Fetuin A

Synthesized by uroepithelium lining 
the thick ascending limb of Henle’s 

loop.

Synthesized mainly in the distal 
convoluted tubules of the kidneys 
and epithelial cells of the vascular 

plexus in the brain.

Synthesized mainly (more 95 %)  
in the liver and kidneys.

They give an estimate concerning further progression of the disease, servility and death.


