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Wznawiaé. Przewlekta choroba nerek (PChN) jest przyczyna zaréwno zachorowalnosci, jak i smiertelnosci
na catym $wiecie. Na Ukrainie PChN wystepuje u 12 % populacji. Progresja zwitdknienia nerek i zaburzenia
homeostazy mineralnejistotnie pogarszajg jakosc zycia pacjentéw z PChN. Wczesna diagnoza i leczenie to
gtowne srodki zapobiegajgce progresji PChN i opdzniajgce dziatania niepozgdane. Niedobér wczesnych,
nieinwazyjnych biomarkeréw niekorzystnie wptywa na zdolnos¢ szybkiego wykrywania i leczenia PChN.
Zmiany w kanalikach proksymalnych odgrywajg wazna role w progresji PChN. Istniejg nowoczesne markery
uszkodzenia nerek, takie jak uromodulin (UMOD), biatko Klotho oraz potransiacyjne modyfikacje fetuiny A
(FtA). Leczenie PChN we wczesnym stadium moze poprawic czynnosé nerek i/lub spowolni¢ postep PChN.
Stowa kluczowe: przewlekta choroba nerek; hiperfosfatemia; uromodulina; biatko Klotho, fetuina A

PChN ma znaczacy wpltyw na zdrowie na $wiecie. Jest
przyczyna zaré6wno zachorowalnosci, jak i $miertelnodci na
calym $wiecie, a PChN stanowi powazne obciagzenie ekono-
miczne zaré6wno dla pacjenta, jak i dla kraju [1, 2].

PChN jest powaznym problemem zdrowia publicznego,
ktory dotyka 13,4 % dorostej populacji i powoduje 1,2 min
zgonow rocznie [1, 3]. PChN wystepuje u 12 % ludnosci
Ukrainy [4]. W Stanach Zjednoczonych czgstos¢ wystepo-
wania PChN jest znaczaca, a okolo 1 na 7 osob w wieku
powyzej 30 lat cierpi na PChN. Ponad 800 milionéw ludzi
na catym $wiecie cierpi na PChN. Czg¢sto$¢ wystepowania
PChN na $wiecie wynosi 10-16 % calej populacji. U os6b
starszych sigga 30 % [4]. PChN zostata uznana za ukryta epi-
demig [1].

Od 2002 roku termin PChN laczy w sobie roézne formy
nozologiczne z duzym prawdopodobienstwem progres;ji
przewlektego procesu patologicznego w nerkach z poézniej-
sza przewlekta niewydolnoscig nerek, ktora wymaga terapii
nerkozastepczej (dializa otrzewnowa, hemodializa lub prze-
szczep nerki) [4].

PChN to pogorszenie czynnosci nerek, ktore korelu-
je ze wskaznik filtracji kigbuszkowej (GFR) ponizej 60 ml/
min/1,73 m? i/lub markerami niewydolnos$ci nerek przez co
najmniej 3 miesigce, charakteryzujgce si¢ zmianami struktu-
ralnymi i/lub czynno$ciowymi nerek zgodnie z dane kliniczne,
laboratoryjne, instrumentalne, morfologiczne badania, ktore

stanowig podstawe do wykluczenia ostrego procesu patolo-
gicznego w nerkach [1, 4, 6-9] (patrz Tabela 1).

Zaproponowano nowe koncepcje dla PChN:

1. Cukrzycowa choroba nerek = cukrzyca + PChN (daw-
niej nefropatia cukrzycowa (KDOQI, 2007, 2012)).

2. Nadcisnieniowa choroba nerek bedaca konsekwencja
nadci$nienia.

3. Niedokrwienna choroba nerek b¢daca nastepstwem roz-
woju miazdzycy [4].

Pacjenci z PChN sg podatni na nadcisnienie, choroby ser-
cowo-naczyniowe, zwloknienia i zaburzenia mineralne. Obec-
nie skuteczng metoda leczenia PChN jest jedynie dializa lub
przeszczep nerki [5, 10, 11].

Zwtoknienie w PChN zwykle postepuje. Zwldknienie
jest uwazane za nadmierne nagromadzenie skladnikow
macierzy tkanki lacznej. Zwldknienie moze wplywaé na
trzustke, nerki, skore, ptuca, oczy, serce i watrobg. Jest to
koncowy patologiczny proces naprawy dezadaptacyjnej,
charakteryzujacy si¢ tworzeniem 1 akumulacjg macierzy
zewnatrzkomorkowej, glownie w lokalnych komorkach
mezenchymalnych [11] (patrz Tabela 2).

Komorki mezenchymalne, takie jak fibroblasty i miofibro-
blasty, odgrywaja wazng role w powstawaniu i rozwoju zwlok-
nienia. Proces ten jest $cisle zwigzany ze stanem zapalnym i
regeneracja tkanek, ktore zwykle wystepujg w trakcie i po od-
powiedzi zapalnej i sg inicjowane réznego rodzaju uszkodze-
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niami tkanek. Patologiczny proces przebudowy widknistej jest
czgsto przyczyna dysfunkceji narzgdow. Zwldknienie wigze si¢
z wysoka zachorowalnoscia i $miertelnoscia [11, 12].

W PChN prawie zawsze dochodzi do naruszenia homeo-
stazy mineralnej. U ludzi poziom wapnia i fosforu jest utrzy-
mywany przez rownowage migdzy ich odkladaniem w tkance
kostnej, reabsorpcja w nerkach i wchtanianiem w jelicie [13].
Zaburzenia rownowagi mineralnej, a mianowicie hiperwita-
minoza D,, hiperkalcemia i hiperfosfatemia, moga wptywa¢
na proces starzenia, co cze¢sto obserwuje si¢ w przypadku nie-
doboru biatka Klotho. Modele zwierzgce wykazaly, ze utrzy-
manie homeostazy mineralnej poprzez zwigkszenie poziomu
biatka Klotho hamuje starzenie si¢ [14, 15].

PChN moze by¢ powiktana rzadkim i zagrazajacym zy-
ciu zespotem kalcyfilaksji (areriolopatii zwapniowo-mocz-
nicowej), ktory charakteryzuje si¢ pojawieniem si¢ malych
zwapnien naczyniowych prowadzacych do niedrozno$ci na-
czyh krwiono$nych i martwicy tkanek. Termin “kalcyfilaksja”
zostal po raz pierwszy uzyty przez Hansa Selye w 1961 r.,
rzadki, patologiczny stan, w ktérym dochodzi do przysrodko-

wego zwapnienia tetnic 1 tetniczek, a takze proliferacji btony
wewngtrznej i zwloknienia [16—18].

Wezesna diagnoza i leczenie to gtowne $rodki zapobiega-
jace progresji PChN i opdzniajace dzialania niepozadane. Nie-
dobor wezesnych, nieinwazyjnych biomarkerow niekorzyst-
nie wpltywa na zdolno$¢ szybkiego wykrywania i leczenia
PChN. Leczenie PChN we wczesnym stadium moze poprawic
czynnos¢ nerek i/lub spowolni¢ progresje PChN [1].

W praktyce klinicznej zaburzenia czynnos$ci nerek nadal
ocenia si¢ na podstawie st¢zenia kreatyniny w surowicy, cy-
statyny C i albuminurii oraz warto$ci GFR, ktory okresla si¢
réoznymi réwnaniami. Istnieje nieliniowa korelacja migdzy
kreatyning, cystatyng C i GFR: stosunkowo niewielki poczat-
kowy wzrost tych markerow definiuje si¢ jako istotny spadek
GFR [1, 8].

Na przyktad okoto 30 % pacjentdow z cukrzycowa chorobg
nerek ma prawidlowy poziom albumin w moczu. Lub moze
by¢ nieobecny w nadci$nieniowej lub cewkowo-$rodmigz-
szowej chorobie nerek. Albuminuria wystepuje, zanim GFR
zacznie spada¢. Jednoczes$nie stezenie kreatyniny w surowicy

Tabela 1. Prognozy PChN na podstawie kategorii GFR i albuminurii: KDIGO 2012

Kategorie trwatej albuminurii

A1 A2 A3
Normailny lub lekko Umiarkowanie .
podwyzszony podwyzszone R
< 30 mg/g; 30-300 mg/g; > 300 mg/g;
< 3 mg/mmol 3-30 mg/mmol > 30 mg/mmol
C1 Vl\\l/%a?ilny lub >90 Niskie ryzyko* Umiarkowane ryzyko | Wysokie ryzyko
| G2 | Lekko zmniejszona 60-89 | Niskie ryzyko Umiarkowane ryzyko | Wysokie ryzyko
o : -
T Umiarkowanie , . )
% 0'3 C3a zmniejszona 45-59 | Umiarkowane ryzyko | Wysokie ryzyko Bardzo wysokie ryzyko
S Znacznie . . Bardzo wysokie .
8 £ C3b zmniejszona 30-44 | Wysokie ryzyko ryzyko Bardzo wysokie ryzyko
© =
X E Zdecydowanie Bardzo wysokie Bardzo wysokie .
C4 zmnigjszona 15-29 ryzyko ryzyko Bardzo wysokie ryzyko
C5 | Niewydolnos$é nerek <15 Bardzo wysokie Bardzo wysokie Bardzo wysokie ryzyko
ryzyko ryzyko

Uwaga: * — w przypadku braku innych markeréw uszkodzenia nerek lub PChN.

Tabela 2. Szlaki sygnalizacyjne i efekty Klotho w stanach patologicznych [86]

Modyfikacja . A sy
Zwierzeta In Sciezki sygnatowe
geﬁ;\:ﬁ;nal eksperymen- | vitro/in gg?;;;%?f’zt:; zaangazowane w Uzyskane efekty
rozpuszczalne talne vivo realizacje efektu
1 2 3 4 5 6
Apoptoza wywo- .
Biatko rozpusz- tana stresem w rﬂ?)rvr\]/g\r,]\liznsl,ter gsl?l ;sé)(p'-t{c?-_ Hamowanie stresu i
czalne Myszy In vivo | kardiomiocytach- 2v retikulum endoplazma- apoptozy retikulum
Hamowanie p38, ty P endoplazmatycznego
INK ycznego
Zahamowanie . . .
Biatko rozpusz- M In vi kanatu wapnio- ZahamowanleTlgSg%J Zapobieganie Iprze.-
czalne yszy nvivo wego, TRPC6 wapniowego, ; rostom, normalizacja
FGFFi1 ’ FGFR1 cisnienia krwi
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Zakonczenie tabela 2

1 2 3 4 5 6
Zahamowanie zwtoknie-
Myszy, ko- Uszkodzenie nia, stresu oksydacyjnego, . ; )
Biatko rozpusz- mérki H9¢c2 In vivo, | migénia sercowe- | dysfunkcji mitochondriéw gsg%glrig;?leérﬂzzko
czalne i neonatalne | in vitro | go spowodowane |i zahamowanie stanu Sercowedo ¢
kardiomiocyty hiperglikemig zapalnego wywotanego 9
aktywacja NF-kB i ROS
L Wzmocniona ekspresja
Wysokie cisnie- :
Myszy db/ . Klotho i dysmutazy ponad- . . "
Biatko rozpusz- db (model n vi me}{ :’s‘l((u.rcz.ovye, tlenkowej, zahamowanie Z_apc_JblegarE(_e zZwiok i
czalne cukrzycy typu nvivo | zwioknienie | ekspresji fibronektyny, HIF nieniu nerex | normati-
przerost nerek, . ’ ’ | zacja cisnienia krwi
2) hiperalikemia TGF-B1i TNF-o, fosforyla-
perg cja nerkowa mTOR i Akt
Myszy db/ Czesciowa normali-
Biatko rozpusz- db (model . . . . zacja poziomu cukru,
czalne cukrzycy typu Invivo | Hiperglikemia zwiekszone wydziela-
2) nie insuliny
. Cukrzyca wywo- Zapobieganie apop-
Biatko rozpusz- Myszy In vivo | tana streptozoto- tozie komorek beta
czalne ;
cyng trzustki
. . . Niedoborowi Klotho
Biatko rozpusz- . Niedoborowi Klotho towa-
Myszy db/db | In vivo | Cukrzyca ) towarzyszg procesy
czalne rzyszy aktywacja NF-xB zapalne w nerkach
. ) Myszy z Hamuje rozwdgj
Eg‘:;% ;Igcz)%u::a niedoborem In vivo, | Rak piersi u czto- | Hamowanie wigzania nowotworow in vivo
KL1 odpornosci in vitro | wieka IGF-1 z jego receptorem oraz wzrost komorek
nude rakowych w hodowli
Biatko rozpusz- . . . _ | Hamuje proliferacje
czalne/Domena Myszy fg 5;;_3’ Rak trzustki :\g\?vdlélr?gSGslil?t(gg.f YaNa- | omérek nowotworo-
KL1 Y wych in vitro
o Cukrzyca wywo- | Hamowanie kinazy typu . R
Modyfikacja gene- . . o : Zapobiega zwtdknieniu
tycznaszczur Szczur In vivo | tana streptozoto- | coiled-coil zwigzanej z nerki, przerost nerek
cyng Rho
Modyfikacja gene- . o . . Intensyfikacja remieli-
tyczna Myszy In vivo | Demielinizacja Zahamowanie Akt i ERK nizacj
Zaburzenia . . Zmniejszenie czesto-
Modyfikacja gene- Mysz In vivo funkcji poznaw- é\mﬁkzsé a ggi%rﬁgg ok Sci napadéw padacz-
tyczna yszy czych, aktywnosé NMDA-r (E ce ! tor kowych, zwiekszenie
padaczkowa ptory pamieci przestrzennej
o Ludzkie Hamowanie szlaku sy- .
ygggg}i?:ﬁf%igz komorki me- | In vitro | Hiperglikemia gnatowego Egr-1, TGFp1/ ;‘xg E#?eﬂrig\(/:veesy
y ! zangialne SMAD3

Uwagi: p38 — kinaza biatkowa aktywowana mitogenami; JNK — kinaza N-koncowa c-Jun; GluN2B — jonotropowy
receptor glutaminianu (NMDA 2B); NMDA — N-metylo-D-asparaginian; Akt — kinaza biatkowa B; ERK — kinaza
regulowana sygnatem zewnatrzkomérkowym; IGF-1 — insulinopodobny czynnik wzrostu 1; bFGF — podstawo-
wy czynnik wzrostu fibroblastéw; Egr-1 — czynnik transkrypcyjny wczesnej reakcji wzrostu-1; SMAD3 — matka
przeciwko dekapentaplegicznemu homologowi 3; NF-xB — jadrowy czynnik kappa B; HIF — czynnik indukowany
hipoksja 1; TGF-1 — transformujacy czynnik wzrostu beta 1; TNF-o. — czynnik martwicy nowotworu alfa; mTOR —
mechaniczny cel rapamycyny; ROS — reaktywne formy tlenu; TRPC6 — kanoniczny przejSciowego potencjaf re-
ceptora 6; FGFR1 — czynnika wzrostu fibroblastow 1receptory; KL — domena zewngatrzkomoérkowa biatka a-Klotho.

Tabela 3. Rozpoznanie PChN w zaleznosci od obecnosci markerow uszkodzenia i stanu funkcjonalnego nerek
(E.M. Shilov, 2012)

Markery uszkodzenia nerek

GFR, ml/min/1.73 m?
Jest Nie
>90 PChN Norma
60-89 PChN Grupa ryzyka
<60 PChN PChN
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zaczyna wzrasta¢ przy uszkodzeniu okoto 40-50 % miazszu
nerki [1].

Dlatego diagnoza wczesnych stadiow PChN nie jest wy-
starczajaco skuteczna. Istnieje kilka alternatywnych marke-
réw, a mianowicie P2-mikroglobulina, KIM-1 (czasteczka
uszkodzenia nerek-1), NGAL (lipokalina polaczona z neutro-
filami) i L-FABP (biatko wiagzace kwasy tluszczowe watroby)
[1,9, 19-31].

Zmiany w cewkach proksymalnych odgrywaja wazna
role w progresji PChN [1]. Dlatego najwigkszym zaintereso-
waniem cieszg si¢ markery kanalikow proksymalnych nerek.
Oprocz KIM-1, NGAL i L-FABP istniejg mniej zbadane mar-
kery, takie jak UMOD, biatko Klotho i potranslacyjne modyfi-
kacje FtA (patrz Tabela 3).

Co wiemy o tych markerach?

UMOD. Istnieja dowody na to, ze biatko to zostato po raz
pierwszy opisane przez Carlo Rovida w 1873 roku [32]. Ale
naukowo, bialko Tamma-Horsvall zostato odkryte przez Hor-
svalla i Tamme w 1950 roku, kiedy badanie hemaglutynacji
wirusa w moczu ujawnito biatko, ktére hamuje hemeglutyna-
cj¢ wirusa. W 1985 roku zostata ponownie odkryta przez Dec-
kera i Muchmore’a jako glikoproteina immunomodulujaca,
aw 1987 roku Pennica i in. zidentyfikowali pierwotng struktu-
r¢ UMOD, ktora wykazata, ze UMOD jest podobny do biatka
Tamm-Horsfall [33-36].

Jest to najczestsze biatko w moczu zdrowej osoby. UMOD
to biatko kwasne o masie 90 kDa, ktdore posiada niski punkt
izoelektryczny (pl 5,00). Syntetyzowana jest wytacznie przez
nabtonek wyscietajacy grube ramie wstepujace petli Henlego
1 kanaliki dystalne [33, 35-41]. UMOD bierze udziat w regu-
lacji systemow transportu wierzchotkowego, w grube ramie
wstepujace petli Henlego oraz w poczatkowym odcinku dy-
stalnego kretego kanalika nerki, wptywajac na reabsorpcje soli
[33, 35, 38, 42-44].

Przewazajaca ilo§¢ UMOD jest wydalana z moczem, eks-
presja UMOD w tkance $rodmigzszowej nerek jest znikoma
[36,45,46]. W swietle uktadu moczowego monomery UMOD
tworzg homopolimerowe widkna, ktdre agreguja i otaczaja
uropatogeny (wtokniste Escherichia coli typu 1) 1 sg wydalane
z moczem [33]. UMOD jest waznym biatkiem regulatorowym
odpornosci wrodzonej, ktére moze wigza¢ fragmenty dopel-
niacza [47-50].

UMOD jest strukturalnie homopolimerowa glikoprote-
ing, ktora zapobiega adhezji patogenu bakteryjnego. Modut
C-koncowy strefy przezroczystej UMOD posredniczy w jej
polimeryzacji. Brak szczegotowych informacji o N-koncowe;j
czgsei gatezi UMOD. Przyjmuje si¢, ze ma domen¢ z o$Smio-
ma cysteinami [51, 52].

Oprocz  klasycznego uwalniania dowierzchotkowego,
UMOD w mniejszym stopniu wchodzi do podstawno-boczne;j
domeny komorek nabtonka kanalikow, skad jest uwalniany do
tkanki §rodmiazszowej, a stamtad do krwiobiegu [36, 38, 53,
54]. Krazaca forma UMOD jest gtéwnie monomeryczna, jak
przedstawili Micanovic i in. (patrz rys. 1).

Stezenie UMOD w surowicy w porownaniu z moczem jest
znacznie nizsze (odpowiednio 20-50 ng/ml vs 20-50 mcg/ml)
[36]. UMOD w surowicy (sUmod) moze odzwierciedla¢ mase
funkcjonalng nefronu [38, 55, 56]. W krazagcym UMOD wy-

stepuje liniowa korelacja z GFR u pacjentow z PChN, co moze
pomobe w rozpoznaniu wezesnych stadiow uszkodzenia nerek,
gdy stezenie kreatyniny nadal miesci si¢ w granicach nor-
my [38, 57-61]. Wedlug badan naukowych okres poitrwania
UMOD z moczem wynosi okoto 16 godzin, ale zakres wahan
jest duzy, od 3 godzin do 7 dni [38]. Hepsyna odgrywa wazna
role w polimeryzacji i przetwarzaniu UMOD [44].

UMOD to wielofunkcyjne biatko, ktore odgrywa wazna
rolg nie tylko w utrzymaniu homeostazy uktadu moczowe-
go, ale rowniez uktadowego. Sugeruje si¢, ze UMOD jest
kolejnym hormonopodobnym peptydem, ktory tworzy ogél-
noustrojowa odpornos$¢ i rownowage sygnatéw zapalnych, a
takze dziata jako regulator stresu oksydacyjnego [36, 38, 62,
63]. Ostatnie badania in vitro wykazaty, ze UMOD hamuje
czynno$¢ monocytow, hemaglutynacje wirusa i proliferacje
komorek T zalezna od antygenu [64]. Bierze udzial w regu-
lacji chemotaksji, fagocytozy i apoptozy, pozytywnie wptywa
na migracj¢ przeznabtonkowa neutrofili (poprzez specyficzne
receptory na powierzchni komorki) [64, 65].

Badania sugeruja, ze UMOD bierze udzial w ochronie drog
moczowych przed infekcjami i tworzeniem kamieni [66—68],
w regulacji transportu soli, w uszkodzeniu nerek i odporno-
Sci wrodzonej [41, 69—71]. Rzadkie mutacje zmiany sensu w
genie UMOD sg najczestszg przyczyng autosomalnej domi-
nujacej choroby kanalikowo-§rodmigzszowej nerek, charakte-
ryzujacej si¢ uszkodzeniem kanalikow i1 rozwojem zwldoknie-
nia $rédmiazszowego oraz brakiem uszkodzenia kigbuszkow
nerkowych, z rozwojem niewydolnosci nerek. Mechanizm
uszkodzenia i rozwoju zwloknienia jest zwigzany z akumula-
cja wewnatrzkomorkowych agregatow zmutowanego UMOD
w grube rami¢ wstepujace petli Henlego [33, 36, 40, 72-76].

W $wietle kanalikow UMOD tworzy nici o wysokiej ma-
sie czasteczkowej, ktore sa czescig cylindrow hialinowych.
UMOD jest podatny na zwigkszong glikacje (do 30—40 % swo-
jej masy czasteczkowej). Zmiany strukturalne i funkcjonalne
biatka moga powodowac choroby nerek i drog moczowych.
Zmiana profilu glikozylacji UMOD czyni go potencjalnym
biomarkerem zdrowia nerek [36, 77-80]. Poziomy UMOD w
moczu i surowicy odzwierciedlajg liczbe nienaruszonych ne-
fronow [38].

Biatko Klotho. Profesor Makoto Kuro-O wraz z grupg na-
ukowcow odkryt w 1997 roku gen Klotho, ktéry spowalnia
starzenie si¢. Zostal nazwany na cze$¢ bogini starozytnej mi-
tologii greckiej, ktora zakrecita ni¢ zycia. Rok pozniej Y. Mat-
sumura i in. na chromosomie 13q12 u ludzi zidentyfikowano
gen o-Klotho [15, 81, 82].

Badania wykazaty, ze wymodelowany nadekspresja genu
Klotho hamuje fenotypowe objawy starzenia i wydluza ocze-
kiwang dlugos¢ zycia. Gen Klotho jest jednym z genow ,,prze-
ciwstarzeniowych” [82, 83].

Pozniej odkryto, ze biatko Klotho ma trzy izoformy a,
B iy [84, 85]. Chromosom 4 zawiera niekompletng kopie
genu Klotho o podobnej sekwencji nukleotydowej zwanej
B-Klotho [82].

Gen B-Klotho koduje jednoprzejsciowe biatko transbto-
nowe, ktore jest wyrazane glownie w trzustce, biatej tkance
thuszczowej 1 watrobie i jest zaangazowane w regulacje syn-
tezy kwasow zotciowych z czynnikiem wzrostu fibroblastow
(FGF) [82]. y-Klotho (clotho/laktaza-florizyna) to biatko po-

Vol. 11, No. 2, 2022

http://kidneys.zaslavsky.com.ua 71



3anpouueHi ctarti /| Guest Arficles

dobne do laktozy wystepujace w nerkach, brunatnej tkance
thuszczowej 1 strukturach oka. Funkcja biatka y-Klotho jest
nadal niejasna [85, 86].

Gen Klotho ulega ekspresji gtownie w dystalnych kanali-
kach kretych nerek i komorkach nabtonka splotu naczyniowe-
go mozgu. Gen ten jest okre$lany w innych narzadach, ale w
niskich stezeniach [15].

Komorki z ekspresja genu Klotho: nabtonek kanalikéw
dystalnych nerek, komorki nabtonka splotu naczyniowego, a
takze komorki przysadki, okr¢znicy i jelita cienkiego, przy-
tarczyc trzustki, tozysko, serce, aorta, pecherza moczowego,
prostaty, miesni szkieletowych, jajnika i jadra [15, 82].

Gen Klotho ma 5 eksondw, 4 introny i koduje biatko Klo-
tho, ktore ma dwie formy, wydzielnicza i transbtonowa [82,
87]. Dwa transkrypty powstaja w wyniku alternatywnego
splicingu RNA, ktory koduje wydzielnicza i blonowa forme
biatka Klotho [15].

Blonna forma biatka Klotho ma domeny transbtonowe,
wewnatrzkomorkowe i zewnatrzkomérkowe. Metaloproteina-
zy macierzy z rodziny ADAM (A Disintegrin And Metallopro-
teinase) rozszczepiaja 10 i 17 domen zewnatrzkomorkowych,
ktore wchodzg do przestrzeni zewnatrzkomorkowe;j. Jest to
rozpuszczalna forma biatka Klotho [15].

Gen Klotho koduje peptyd transbtonowy Klotho, ktory jest
niezbednym koreceptorem dla FGF-23, hormonu niezbednego
do regulacji parathormonu, fosforu i witaminy D [83, 88]. Po-
przez stymulacj¢ wydalania fosforanow przez nerki i redukcje
dihydroksywitaminy D, w surowicy, Klotho indukuje ujemny
bilans fosforanowy [84, 89, 90].

Istnieje 3 cztonkdéw rodziny Klotho: biatka transbtonowe
o roznej dtugosci. Rozpuszczalne formy Klotho mozna otrzy-
mac przez proteolityczne rozszczepienie formy przezbtonowej
przez B-sekretazy [91].

U ludzi posta¢ transbto-

si¢ z 549 aminokwasow. Forma wydzielnicza jest kragzagcym
czynnikiem humoralnym [82] (patrz rys. 2).

Badania wykazaty, ze u osob dorostych w wieku 20 lat
i starszych stezenie biatka Klotho w surowicy wahato si¢ od
239 do 1266 pg/ml [15].

Sugerowano, ze bialko Klotho hamuje starzenie si¢ po-
przez hamowanie szlaku sygnatowego wewnatrzkomorko-
wego insulina/insulinopodobny czynnik wzrostu 1. Redukcja
stresu oksydacyjnego wraz ze wzrostem poziomu biatka Klo-
tho, ze wzgledu na hamowanie szlaku p53/p21, jest mechani-
zmem spowalniajgcym starzenie si¢ i onkogeneze [15, 92, 93].

Istnieje kilka potencjalnych mechanizmow, ktore przy-
czyniaja si¢ do dziatania przeciwwltoknieniowego Klotho w
CKD, takich jak hamowanie wewnatrzkomorkowej sygnali-
zacji Wnt, FGF23 i transformujacy czynnik wzrostu (TGF-B)
[5, 11, 94-97].

Najwigksza jego ekspresje obserwuje si¢ w dystalnych
kanalikach nerek [88]. Poziomy krazacego Klotho (rozpusz-
czalny o-Klotho) sa spowodowane zewnatrzkomérkowa do-
meng biatka Klotho i uwaza sig, ze jest zastgpczym markerem
ekspresji Klotho w nerkach i funkcjonalnej liczby nefronow
[83, 88].

Rozpuszczalny Klotho wplywa na funkcje $rodbtonka,
stres oksydacyjny, starzenie si¢ 1 apoptoz¢ komorek [88]. U
pacjentéw z PChN, chorobg wiencowg i cukrzyca zglaszano
zmniejszong ekspresj¢ genu Klotho i wydzielanie biatka Klo-
tho [82]. Poziom biatka serwatkowego Klotho spada wraz z
wiekiem [15].

FtA. Pedersen po raz pierwszy opisat FtA w 1944 roku
i nadat mu nazwe od tacinskiego slowa fetus ze wzgledu
na jego wysoka zawarto§¢ w plodowej surowicy cielgcej
[98]. Pozniej w 1961 Schmidt, Heremans i Burgess od-
kryli wielofunkcyjna fosforylowana glikoproteing (znang

nowa biatka Klotho znajdu-
je si¢ w btonie komodrkowe;j
i aparacie Golgiego, sktada
si¢ z 1012 aminokwasdéw, ma
mas¢ czasteczkowa ~ 130 kDa
i obejmuje 3 domeny: domeng
zewnatrzkomoérkowa 1 domeng
transbtonowa z krotka domeng
cytoplazmatyczng przy C-ko-
niec i ma sekwencj¢ sygnatowa
na N-koncu [82, 91]. Domena
zewnatrzkomorkowa ma dwa
regiony wewnetrznych powto-
rzen (KL1 i KL2) homologicz-
nych sekwencji B-glukozydazy
o koincydencji sekwencji od 20
do 40 %, krotka domena we-
wnatrzkomoérkowa ma dtugosé
10 aminokwasow [82, 91].
Zasugerowano, ze miejsce
zaangazowane W rozszczepia-
nie przezbtonowe znajduje si¢
pomigdzy miejscami KL1 i
KL2. U ludzi dominuje sekre-
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rowniez jako  Alpha-2-Geremans-Schmid) [99-102].
Jest to biatko sktadajace si¢ z dtugiego tancucha A (282 ami-
nokwasy) i krotkiego tancucha B (27 aminokwasow) pota-
czonych krétkim tancuchem 40 aminokwasow i wazgcym od
52 do 60 kDa [99, 101-103].

Podczas rozwoju ptodowego ekspresja FtA jest wykrywa-
na we wszystkich gldownych narzadach i splocie naczyniowym
[98, 99]. W surowicy stezenie FtA waha si¢ od 0,4 do 1,0 g/l
[98, 100]. FtA jest syntetyzowany gtoéwnie (> 95 %) w watro-
bie (tzw. hepatokin), moze by¢ syntetyzowany w nerkach, gro-
madzi si¢ w duzych ilosciach w zwapniatych kosciach, krwi i
ptynie mézgowo-rdzeniowym [98, 99, 103].

FtA ma wptyw na homeostaz¢ energetyczng, wzrost ko-
morek, adipocyty i stan zapalny (moze by¢ biatkiem ostrej
fazy zarowno dodatnim, jak i ujemnym), oddzialuje z recep-
torem insuliny poprzez hamowanie jego kinazy tyrozynowe;j
[99, 100, 104—113]. Jest posrednim regulatorem stanu zapal-
nego, zwapnienia, polaryzacji makrofagéw i zwlOknienia w
tkankach [98, 108, 114-119].

Pod koniec lat 70. LeBreton i wspotpracownicy odkryli, ze
FtA jest jednym z gtéwnych biatek negatywnych w ostrej fa-
zie. Pojawienie si¢ krotkich izoform czynnika transkrypcyjne-
go C/EBP, ktdre nie moga utrzymac podstawowej aktywnosci
promotora watrobowego w porownaniu z dtugimi izoformami
C/EBP, ktore dominujg w hepatocytach w spoczynku [98].

Zajmuje wazne miejsce w prewencji litogenezy nerek i
choroby wiencowej poprzez hamowanie nadmiernej minera-
lizacji [99, 120—124]. FtA dzigki swojej zdolnosci do hamo-
wania apoptozy i nasilania fagocytozy reszt apoptotycznych
zmniejsza stres mineralizacyjny [98, 125-128].

FtA jest rowniez biatkiem transportowym dla fosforandw 1
wapnia, ktore odgrywa wazng role w mineralizacji kosci, po-
przez taczenie malych klastrow fosforanéw i wapnia, zapo-
biegajac w ten sposOb ich wzrostowi, agregacji i wytragcanie
mineratow, zapobiegajac wchtanianiu przez komorki tych roz-
puszczalnych koloidow biatkowo-mineralnych ktore sg znane
jako czastki kalcyproteinowe (sktadajace si¢ z monomerow
kalcyproteinowych) [98, 104, 105, 129-133].

Miejsce wigzania mineralu w FtA znajduje si¢ w N-kon-
cowej domenie cystatynowej CY1 [98]. Mate kompleksy fos-
foranu wapnia (klastry Posnera) sa lepszym ligandem FtA niz
wapn jonowy [98]. Badania in vivo i in vitro wykazaty bezpo-
$redni wptyw podwyzszonego poziomu fosforanow na funk-
cje Srodbtonka [134].

Dla nasyconych kwasow thuszczowych FtA jest biatkiem
adaptorowym (ligandem endogennym), za pomoca ktorego
aktywuja receptor Toll-podobny 4 [105, 108]. FtA odgrywa
wazng rolg w wigzaniu mineratow, lektyn (w tym galekty-
ny-3) [108, 135-137] i lipidow, bierze udziat w hamowaniu
transmisji sygnatu B-czynnik wzrostu i antonizacji receptorow
insuliny [98, 108, 138]. FtA jest niezbednym kofaktorem w
hamowaniu ekspresji prozapalnej cytokiny, czynnika martwi-
cy nowotworu wraz ze spermidyna, aktywujac akumulacje
triacyloglicerolu i NF-xB [98, 108] (patrz rys. 3).

FtA, jak rowniez Fetuina-B, ktora jest bogaty w histydyne,
kininogen i glikoproteing, nalezy do rodziny cystatyn typu 3,
ktora jest inhibitorem peptydazy cysteinowej [98]. Do tej pory
nie zidentyfikowano zadnej specyficznej docelowej peptydazy
dla FtA [98].

FtA podlega istotnym modyfikacjom potranslacyjnym,
ktore obejmuja obrobke proteolityczng od jednotancuchowego
prekursora do krazacego kompleksu dwutancuchowego biat-
ka, N- 1 O-glikozylacje¢, zasiarczenie i fosforylacje treoniny i
seryny, co wptywa na jego aktywnos¢ i stabilno$¢ [98, 101].

Whioski

Sa istotne jest wczesne rozpoznanie PChN, identyfikacja
pacjentéw, u ktorych moze dojs¢ do schytkowej niewydol-
nos$ci nerek. Wskazniki, w tym kreatynina, szacowany GFR 1
biatkomocz, nie w pelni odpowiadaja potrzebom klinicznym.
Dlatego potrzebne sa nowe biomarkery do oceny progresji
PChN. I nie jeden biomarker, ale potaczenie r6znych biomar-
kerow. Tak wigc, jak widzimy, markery uszkodzenia nerek ta-
kie jak UMOD, biatko Klotho, FtA sa dzi$ istotne i to nie tylko
dla wczesnej diagnozy, moga by¢ podstawg do opracowania
nowych lekow w nefrologii do leczenia pacjentéw z PChN, w
tym, i nefropatia cukrzycowa. Te biomarkery charakteryzuja
si¢ wykrywaniem wczesnych uszkodzen i lokalizacja uszko-
dzen. To pozwala nam oceni¢ dalsza progresj¢ PChN, nasile-
nie i $miertelnos¢ [140].
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HALIOHQABHMI YHIBEOCUTET OXOPOHM 3A0POB S YkpaiHu imeHi MN.A. LLyrimka, m. Knis, YkpaiHa

3HAYEHHS NPOTEOMHUX AOCAIAXKEHb HOBITHIX MAPKEPIB YPOKEHHSI HUPOK Y Ceui AAS OLiHKK nepeobiry,
NPOrpecyBaHHs N YCKAGAHEHbD Y nauieHTiB i3 XXH

Pe3rome. Xponiuna xBopo6a nupox (XXH) € mpuuuHow s 3a-
XBOPIOBAHOCTI, TaK 1 CMEPTHOCTI B ycboMy cBiTi. B Ykpaini XXH
BUSBIIAIOTE Y 12 % HacenenHs. CyTT€BO MOTIPUIYIOTh SIKICTh KHTTS
y nauienTiB i3 XXH nporpecyBanus (piOpo3y HHUPOK i MOPYIICHHS
MiHEpaJbHOTO ToMeocTa’y. OCHOBHHMH 3axoJaMH 3amo0iraHHs
nporpecyBanH0 XXH 1 BiICTpOYCHHS HECTIPUATIMBUX HACIIJIKIB €
paHHS JiarHOCTUKA I JiikyBaHHA. JlediUT paHHIX, HEIHBa3UBHUX
OioMapKepiB HEraTWBHO BIUIMBAE HA 3[aTHICTh HIBU/KO BHSIBISTH

i mikyBaru XXH. ¥V nporpecyBanni XXH BaxiuBy poib Biairpae
YpaskeHHs IPOKCUMaJIbHUX KaHaJbLiB. € HOBITHI MapKepH ypaKeH-
HSl HUPOK, Taki sK ypomoxyiin, 6inok Klotho i mocrrpaHcsmiiai
moaudikauii ¢peryiny A. JlikyBanus XXH Ha paHHIX cTaxisx MOxe
MOKpaIUTH (PYHKIIFO HUPOK 1/a00 CHOBIIBHUTH MPOrPECYBaHHS
XXH.

KurouoBi ciioBa: xponiusa xBopoba HHpPOK; rineppocharemis;
ypomony:in; nporein Klotho; deryin A
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Shupyk National Healthcare University of Ukraine, Kyiv, Ukraine

The value of proteomic studies of the latest markers of kidney damage in the urine to assess the course,
progression and complications in patients with CKD

Abstract. Chronic kidney Disease (CKD) is the cause of both mor-
bidity and mortality worldwide. In Ukraine, 12 % of the population is
diagnosed with CKD. Significantly worsen the quality of life in patients
with CKD progression of renal fibrosis and impaired mineral homeo-
stasis. Early diagnosis and treatment are the main measures to pre-
vent CKD progression and delay adverse effects. Deficiency of early,
non-invasive biomarkers adversely affects the ability to rapidly detect

and treat CKD. Proximal tubular lesions play an important role in the
progression of CKD. There are new markers of kidney damage, such
as uromodulin, Klotho protein and post-translational modifications of
fetuin A. Treatment of CKD in the early stages may improve renal func-
tion and/or slow the progression of CKD.

Keywords: chronic kidney disease; hyperphosphatemia; uromodu-
lin; Klotho protein; fetuin A

Graphic abstract/IpagidHn pegpepar
Biomarkery PChN

Uromodulina

Syntetyzowany wytaczne przez
uroepitelium gruba wznoszaca sie
czesé petli Henlego.

Biatko Klotho

Syntetyzowany gléwnie w
dystalnych kanalikach kretych
nerek i komorkach nabtonka splotu

Fetuina A

Syntetyzowany gtéwnie
(ponad 95 %) w watrobie i nerkach.

naczyniowogo w mézgu.

Te biomarkery charakteryzujg sie wykrywaniem wczesnych uszkodzen, lokalizacjg uszkodzen. Ocen dalszy

postep choroby, nasilenie i Smiertelnosc¢.

Biomapkepu XXH

YpomopayniH

CurHTE3yeTbCs BUKIIOYHO eniTenieM
TOBCTOro BUCXiOHOro BigAiny netni
leHne.

Binok Knoto

CuHTE3yETbCA NEPEBAXKHO B AUC-
TanbHWX 3BMBUCTUX KaHambLAX HUPOK
Ta enitenianbHYX KNiITMHaX CyaVHHOrO

®deTyiH A

CUHTE3YyETbCS NepeBaXkHO
(moHag 95 %) y neviHui 1 HUpKax.

CnneTeHHsA B roJfIoBHOMY MO3KY.

[ns unx 6iomapKepiB xapakTepHe BUSBIEHHS PaHHIX MOLUKOMKEHb, NoKanidauii MoLWKOmKeHHS. [atoTb OLiHKY
LLIOA0 NoJasnbLLIOro NPOrpecyBaHHs 3aXBOPIOBaHHS, TAXKKOCTI 1 CMepTi.

Biomarkers of CKD

Uromodulin

Synthesized by uroepithelium lining
the thick ascending limb of Henle’s
loop.

Klotho protein

Synthesized mainly in the distal
convoluted tubules of the kidneys
and epithelial cells of the vascular

Fetuin A

Synthesized mainly (more 95 %)
in the liver and kidneys.

plexus in the brain.

They give an estimate concerning further progression of the disease, servility and death.
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