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Хронічна хвороба нирок (ХХН) має значний вплив 
на глобальне здоров’я. Вона є причиною як захворюва-
ності, так і смертності в усьому світі, крім того, ХХН — 
це великий економічний тягар як для пацієнта, так і 
для країни [1, 2].

ХХН є серйозною проблемою громадського 
здоров’я, вона вражає 13,4 % дорослого населення і є 
причиною 1,2 млн смертей на рік [1, 3]. ХХН наявна у 
12 % населення України [4]. У Сполучених Штатах зна-
чна поширеність ХХН: близько 1 із 7 осіб, старших від 
30 років, хворіє на ХХН. Від ХХН у світі страждають 
понад 800 млн осіб [5]. Поширеність ХХН у світі ста-
новить 10–16 % від загальної чисельності населення. В 
осіб похилого віку вона сягає 30 % [4]. ХХН була визна-
на прихованою епідемією [1].

З 2002 року термін ХХН об’єднує різноманіття но-
зологічних форм з високою імовірністю прогресування 
хронічного патологічного процесу в нирках з подаль-
шим приєднанням хронічної ниркової недостатності, 
що потребує нирково-замісної терапії (перитонеаль-
ний діаліз, гемодіаліз або трансплантація нирки) [4].

ХХН — це зниження функції нирок, що корелює 
зі швидкістю клубочкової фільтрації (ШКФ) менше 
за 60  мл/хв/1,73 м2 і/або маркерами ураження нирок 
тривалістю не менше за 3 місяці, що характеризуєть-
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ся структурними і/або функціональними нирковими 
змінами за даними клінічних, лабораторних, інстру-
ментальних, морфологічних досліджень, які дають під-
ставу для виключення гострого патологічного процесу 
в нирках [1, 4, 6–9] (див. табл. 1).

Для ХХН було запропоновано нові терміни:
1. Діабетична хвороба нирок = діабет + ХХН (ра-

ніше — діабетична нефропатія (KDOQI, 2007, 2012)).
2. Гіпертонічна хвороба нирок, що є наслідком ар-

теріальної гіпертензії.
3. Ішемічна хвороба нирок, що є наслідком розвит

ку атеросклерозу [4].
Пацієнти з ХХН схильні до гіпертонії, серцево-

судинних захворювань, фіброзу, а також мінераль-
но-кісткового розладу. На даний час лише діаліз або 
трансплантація нирки є ефективним лікуванням ХХН  
[5, 10, 11].

Фіброз при ХХН, як правило, прогресує. Фіброзом 
вважають надмірне скупчення матриксних компонен-
тів сполучної тканини. Фіброз може вражати підшлун-
кову залозу, нирки, шкіру, легені, очі, серце й печінку. 
Це остаточний патологічний процес дезадаптивної ре-
парації, що характеризується утворенням і накопичен-
ням позаклітинного матриксу, переважно в локальних 
мезенхімальних клітинах [11] (див. табл. 2).
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Мезенхімальні клітини, такі як фібробласти й міо-
фібробласти, відіграють важливу роль у виникненні й 
розвитку фіброзу. Цей процес тісно пов’язаний із за-
паленням і регенерацією тканин, що зазвичай відбува-
ються під час і після запальної відповіді, і ініціюється 
різними типами ушкодження тканин. Патологічний 
фіброзний процес ремоделювання часто є причиною 
дисфункції органів. Фіброз пов’язаний з високою за-
хворюваністю й смертністю [11, 12].

При ХХН майже завжди спостерігаються порушен-
ня мінерального гомеостазу. В організмі людини рівень 
кальцію і фосфору підтримується балансом між депо-
нуванням у кістковій тканині, реабсорбцією в нирках 
і всмоктуванням у кишечнику [13]. Порушення міне-
рального балансу, а саме гіпервітаміноз D

3
, гіперкаль-

ціємія і гіперфосфатемія, може впливати на процеси 
старіння, що часто спостерігається при дефіциті проте-
їну Klotho. Моделі на тваринах показали, що підтрим-

ка мінерального гомеостазу шляхом збільшення рівнів 
протеїну Klotho гальмує старіння [14, 15].

ХХН може ускладнюватись рідкісним і небезпеч-
ним для життя синдромом — кальцифілаксією (каль-
цифіко-уремічна артеріолопатія), для якої характерна 
поява дрібних кальцифікацій судин, що призводить до 
оклюзії кровоносних судин і некрозу тканин. Термін 
«кальцифілаксія» вперше використав Ганс Сельє у 1961 
році, це рідкісний патологічний стан, при якому спо-
стерігається медіальна кальцифікація артерій і артері-
ол, а також проліферація інтими й фіброз [16–18].

Основними заходами запобігання прогресуванню 
ХХН і відстрочення несприятливих наслідків є рання 
діагностика й лікування. Дефіцит ранніх, неінвазивних 
біомаркерів негативно впливає на здатність швидко 
виявляти й лікувати ХХН. Лікування ХХН на ранніх 
стадіях може покращити функцію нирок і/або сповіль-
нити прогресування ХХН [1].

Таблиця 1. Прогноз ХХН на підставі категорій рШКФ і альбумінурії: KDIGO 2012 

Категорії персистуючої альбумінурії

А1 А2 А3

Нормальна 
або незначно 

підвищена
Помірно підвищена Різко підвищена

< 30 мг/г; 
< 3 мг/ммоль

30–300 мг/г; 
3–30 мг/ммоль

> 300 мг/г; 
> 30 мг/ммоль

К
ат

ег
ор

ії 
рШ

К
Ф

  
(м

л/
хв

/1
,7

3 
м

2 )

С1 Нормальна або 
висока ≥ 90 Низький ризик* Помірний ризик Високий ризик

С2 Незначно знижена 60–89 Низький ризик Помірний ризик Високий ризик

С3a Помірно знижена 45–59 Помірний ризик Високий ризик Дуже високий ризик

C3b Суттєво знижена 30–44 Високий ризик Дуже високий ризик Дуже високий ризик

C4 Різко знижена 15–29 Дуже високий ризик Дуже високий ризик Дуже високий ризик

C5 Ниркова недостат-
ність < 15 Дуже високий ризик Дуже високий ризик Дуже високий ризик

Примітка: * — за відсутності інших маркерів пошкодження нирок або ХХН.

Таблиця 2. Сигнальні шляхи й ефекти Klotho при патологічних станах [86]

Генетична 
модифікація/

розчинний білок

Експери-
ментальні 
тварини

In 
vitro/ 

in vivo

Захворювання/
патологічний 

стан

Сигнальні шляхи, 
задіяні для реалізації 

ефекту
Отримані ефекти

1 2 3 4 5 6

Розчинний білок Миші In vivo

Апоптоз у 
кардіоміоцитах, 
викликаний 
стресом

Інгібування p38, JNK

Пригнічення стресу й 
апоптозу ендоплаз-
матичного ретику-
луму

Розчинний білок Миші In vivo

Гіпертрофія 
серця, експе-
риментальна 
гіпертонія при 
дефіциті Klotho

Інгібування кальцієвого 
каналу, TRPC6, FGFR1

Запобігання гіпер-
трофії, нормалізація 
артеріального тиску

Розчинний білок

Миші, клі-
тини H9c2 і 
неонатальні 
кардіоміо-
цити

In vivo, 
in vitro 

Пошкодження 
серцевого м’яза, 
викликане гіпер-
глікемією

Пригнічення фіброзу, 
оксидантного стресу, 
мітохондріальної дис-
функції та інгібування 
запалення, індукованого 
активацією NF-κB і ROS

Запобігання пошко-
дженню серцевого 
м’яза
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Таблиця 3. Діагностика ХХН залежно від наявності маркерів пошкодження  
й функціонального стану нирок (Шилов Е.М., 2012)

рШКФ, мл/хв/1,73 м2
Маркери пошкодження нирок

Є Немає

≥ 90 ХХН Норма

60–89 ХХН Група ризику

< 60 ХХН ХХН

Примітки: p38 — мітоген-активована протеїнкіназа; JNK — N-кінцева кіназа c-Jun; GluN2B — іонотроп-
ний рецептор глутамату (NMDA 2B); NMDA — N-метил-D-аспартат; Akt — протеїнкіназа В; ERK — поза-
клітинна сигнал-регульована кіназа; IGF-1 — інсуліноподібний фактор росту 1; bFGF — базовий фактор 
росту фібробластів; Egr-1 — транскрипційний фактор ранньої реакції росту 1; SMAD3 — матері проти 
декапентаплегічного гомолога 3; NF-κB — ядерний фактор каппа B; HIF — фактор, індукований гіпоксією; 
TGF-β1 — трансформуючий фактор росту бета-1; TNF-α — фактор некрозу пухлини альфа; mTOR — ме-
ханічна мішень рапаміцину; ROS — активні форми кисню; TRPC6 — канонічний транзиторний рецептор-
ний потенціал 6; FGFR1 — рецептор фактора росту фібробластів 1; КL — позаклітинний домен протеїну 
α-Klotho.

1 2 3 4 5 6

Розчинний білок

Миші  
db/db (мо-
дель діабету 
2-го типу)

In vivo

Підвищений 
систолічний 
тиск, фіброз 
і гіпертрофія 
нирок, гіперглі-
кемія

Посилення експресії 
Klotho і супероксиду 
дисмутази, пригнічення 
експресії фібронектину, 
HIF, TGF-β1 і TNF-α, 
фосфорилювання mTOR 
і Akt у нирках

Запобігання фіброзу 
нирок і нормалізація 
артеріального тиску

Розчинний білок

Миші  
db/db (мо-
дель діабету 
2-го типу) 

In vivo Гіперглікемія

Часткова нормалі-
зація рівня цукру, 
посилення секреції 
інсуліну

Розчинний білок Миші In vivo

Цукровий діа-
бет, індукований 
введенням 
стрептозотоцину

Запобігання апопто-
зу в β-клітинах під-
шлункової залози

Розчинний білок Миші db/db In vivo Цукровий діабет
Дефіцит Klotho супро-
воджується активацією 
NF-κB

Дефіцит Klotho 
супроводжується за-
пальними процесами 
в нирках

Розчинний білок/
КL1 домен

Імунодефі-
цитні миші 
nude

In vivo, 
in vitro 

Рак молочної 
залози людини

Інгібування зв’язування 
IGF-1 з його рецептором

Гальмує розвиток 
пухлин in vivo і ріст 
ракових клітин у 
культурі

Розчинний білок/
КL1 домен Миші In vivo, 

in vitro 
Рак підшлунко-
вої залози

Модуляція bFGF та IGF-I 
сигнальних шляхів

Гальмує проліфера-
цію ракових клітин 
in vitro

Генетична моди-
фікація Щури In vivo

Цукровий діа-
бет, індукований 
введенням 
стрептозотоцину

Інгібування Rho-
асоційованої кінази 
coiled-coil

Запобігає фіброзу 
нирок, гіпертрофії 
нирок

Генетична моди-
фікація Миші In vivo Демієлінізація Інгібування Akt і ERK Посилення ремієлі-

нізації

Генетична моди-
фікація Миші In vivo

Когнітивні пору-
шення, епілеп-
тична активність

Збільшує експресію 
GluN2B субодиниць 
NMDA-рецепторів

Зменшення частоти 
епілептичних напа-
дів, збільшення про-
сторової пам’яті

Генетична мо-
дифікація/транс-
фекція

Мезенхімаль-
ні клітини 
людини

in vitro Гіперглікемія
Інгібування Egr-1, 
TGFβ1/SMAD3 сигналь-
ного шляху

Пригнічує фіброзні 
процеси

Закінчення табл. 2
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У клінічній практиці порушення функції нирок і досі 
оцінюють за креатиніном, цистатином С у сироватці 
крові й альбумінурією, а також за величиною рШКФ, 
яку визначають за допомогою різних рівнянь. Між кре-
атиніном, цистатином С і рШКФ існує нелінійна ко-
реляція: відносно невелике початкове підвищення цих 
маркерів визначається як значне зниження рШКФ [1, 8].

Наприклад, у близько 30 % пацієнтів з діабетичною 
хворобою нирок спостерігається нормальний рівень 
альбуміну в сечі. Або він може бути відсутній при гі-
пертензивних або тубулоінтерстиційних захворюван-
нях нирок. Альбумінурія виникає до того, як починає 
знижуватись рШКФ. У той час як концентрація кре-
атиніну в сироватці починає збільшуватися, коли по-
шкоджено приблизно 40–50 % паренхіми нирки [1].

Тому діагностика ранніх стадій ХХН недостатньо 
ефективна. Вивчено кілька альтернативних маркерів, а 
саме β

2
-мікроглобулін, KIM-1 (молекула ураження ни-

рок 1), NGAL (ліпокалін, пов’язаний з нейтрофільною 
желатиназою) і L-FABP (білок, що зв’язує жирні кис-
лоти печінки) [1, 9, 19–31].

У прогресуванні ХХН важливу роль відіграє ура-
ження проксимальних канальців [1]. Тому найбільший 
інтерес викликають маркери ураження проксималь-
них канальців нирок. Окрім KIM-1, NGAL і L-FABP 
є менш вивчені маркери, такі як уромодулін (UMOD), 
протеїн Klotho і посттрансляційні модифікації фетуїну 
А (FtА) (див. табл. 3).

Що нам відомо про ці маркери?
UMOD. Є дані, що вперше цей протеїн описав Кар-

ло Ровіда в 1873 році [32]. Пізніше, у 1950 році, він був 
відкритий і науково описаний Хорсваллом і Таммом: 
при дослідженні вірусної гемаглютинації в сечі вони 
виявили білок, який пригнічував вірусну гемаглютина-
цію. У 1985 році він був повторно відкритий Декером і 
Мучмором як імуномодулюючий глікопротеїн, а в 1987 
році Pennica et al. ідентифікували первинну структуру 
UMOD, яка показала, що UMOD аналогічний протеї-
ну Тамма — Хорсвалла [33–36].

Він є найбільш поширеним білком у сечі здоро-
вої людини. UMOD — кислий білок з масою 90 кДа, 
який має низьку ізоелектричну точку (pI 5,00). Синте-
зується виключно уроепітелієм, що вистилає товстий 
висхідний відділ петлі Генле (Tal) і дистальні канальці 
[33, 35–41]. UMOD бере участь у регуляції апікальних 
транспортних систем у Tal і початковому сегменті дис-
тального звивистого канальця, впливаючи на реаб-
сорбцію солі [33, 35, 38, 42–44].

Переважна кількість UMOD екскретується із сечею, 
в інтерстиції нирок експресія UMOD незначна [36, 45, 
46]. У просвіті сечовивідних шляхів мономери UMOD 
утворюють гомополімерні нитки, що інкапсулюють і 
агрегують уропатогени (фімбрована кишкова паличка 
1-го типу) і виводять назовні із сечею [33]. UMOD — 
важливий регуляторний протеїн уродженого імунітету, 
який може зв’язувати фрагменти комплементу [47–50].

UMOD є структурно гомополімерним глікопро-
теїном, що запобігає адгезії бактеріального патогену. 

C-термінальний модуль прозорої зони UMOD опосе-
редковує його полімеризацію. Відсутня детальна інфор-
мація про N-кінцевий регіон гілки UMOD. Передбача-
ється, що вона має домен з вісьмома цистеїнами [51, 52].

Крім класичного апікального вивільнення, UMOD 
сортується меншою мірою на базолатеральний домен 
канальцевих епітеліальних клітин, де вивільняється в 
інтерстиції, і звідти потрапляє в кровотік [36, 38, 53, 
54]. Циркулююча форма UMOD є переважно моно-
мерною, як було показано Micanovic et al. (див. рис. 1).

Концентрація UMOD у сироватці крові порівня-
но із сечею набагато нижча (20–50 нг/мл проти 20–
50 мкг/мл відповідно) [36]. UMOD сироватки (sUmod) 
може відображати функціональну масу нефрона [38, 
55, 56]. У циркулюючого UMOD є лінійна кореля-
ція з рШКФ пацієнтів із ХХН, що може допомогти в 
діагностиці ранніх стадій пошкодження нирок, коли 
рівень креатиніну ще в межах норми [38, 57–61]. За 
даними наукових досліджень, період напіввиведення 
UMOD із сечею становить приблизно 16 годин, але 
діапазон коливань великий — від 3 год до 7 днів [38]. У 
полімеризації і переробці UMOD важливу роль відіграє 
гепсин [44].

UMOD — багатофункціональний білок, що відіграє 
важливу роль не тільки в сечовому, але й у системно-
му гомеостазі. Є припущення, що UMOD є ще одним 
гормоноподібним пептидом, який формує системний 
імунітет і запальний сигнальний баланс, а також є регу-
лятором окиснювального стресу [36, 38, 62, 63]. Остан-
ні дослідження in vitro показують, що UMOD пригні-
чує функцію моноцитів, вірусну гемаглютинацію та 
антиген-опосередковану проліферацію Т-клітин [64]. 
Він бере участь у регуляції хемотаксису, фагоцитозу й 
апоптозу, позитивно впливає на трансепітеліальну мі-
грацію нейтрофілів (через специфічні рецептори клі-
тинної поверхні) [64, 65].

Проведені дослідження дозволяють припускати, 
що UMOD бере участь у захисті сечовивідних шляхів 
від інфекцій і утворення каменів [66–68], у регуляції 
транспорту солі, розвитку пошкодження нирок і роботі 
вродженого імунітету [41, 69–71]. Рідкісні місенс-му-
тації гена UMOD — найчастіша причина автосомно-
домінантної тубулоінтерстиціальної хвороби нирок, 
для якої характерні ураження канальців, розвиток ін-
терстиціального фіброзу й відсутність пошкодження 
клубочків, з приєднанням ниркової недостатності. Ме-
ханізм пошкодження й розвитку фіброзу пов’язаний з 
накопиченням внутрішньоклітинних агрегатів мутант-
ного UMOD у Tal [33, 36, 40, 72–76].

У просвіті канальців UMOD утворює високомоле-
кулярні нитки, які входять до складу гіалінових цилін-
дрів. UMOD схильний до посиленого глікування (ся-
гає 30–40 % від його молекулярної маси). Структурні 
й функціональні зміни білка можуть бути причиною 
захворювань нирок і сечовивідних шляхів. Зміна про-
філю глікозування UMOD робить його потенційним 
біомаркером здоров’я нирок [36, 77–80]. Рівні UMOD 
у сечі й сироватці відображають кількість інтактних не-
фронів [38].
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Протеїн Klotho. Професор Makoto Kuro-O з групою 
вчених у 1997 р. відкрив ген Klotho, що гальмував ста-
ріння. Його назвали на честь богині давньогрецької мі-
фології, яка пряла нитку життя. Через рік Y. Matsumura 
et al. на 13q12 хромосомі в людини ідентифікували ген 
α-Клото (Klotho) [15, 81, 82].

Дослідження показали, що модельована гіперекс
пресія гена Klotho інгібує фенотипові прояви старіння 
й підвищує тривалість життя осіб. Ген Klotho є одним з 
генів «антистаріння» [82, 83].

Пізніше було виявлено, що білок Klotho має три 
ізоформи: α, β і γ [84, 85]. На 4-й хромосомі знаходить-
ся неповна копія гена Klotho зі схожою нуклеотидною 
послідовністю, що отримала назву β-Klotho [82].

Ген β-Klotho кодує однопрохідний трансмембранний 
протеїн, що переважно експресується в підшлунковій 
залозі, білій жировій тканині й печінці й бере участь у 
регуляції синтезу жовчних кислот за допомогою фактора 
росту фібробластів (FGF) [82]. γ-Klotho (клото/лакта-
за-флоризин) — лактозоподібний протеїн, який можна 
знайти в нирках, бурій жировій тканині й структурах ока. 
Функція білка γ-Klotho досі не з’ясована [85, 86]. 

Ген Klotho експресується переважно в дистальних 
звивистих канальцях нирок та епітеліальних клітинах 
судинного сплетення в головному мозку. Цей ген ви-
значається і в інших органах, але в низьких концен-
траціях [15].

Клітини, які експресують ген Klotho: уроепітелій дис-
тальних канальців нирок, епітеліальні клітини судинно-
го сплетення, а також клітини гіпофіза, підшлункової, 
передміхурової, паращитоподібної залоз, плаценти, сер-
ця, аорти, сечового міхура, скелетної мускулатури, тов-
стої і тонкої кишки, яєчників і яєчок [15, 82]. 

Ген Klotho має 5 екзонів, 
4 інтрони й кодує протеїн 
Klotho, у якого є дві фор-
ми  — секреторна й транс-
мембранна [82, 87]. Шляхом 
альтернативного сплайсин-
гу РНК утворюються два 
транскрипти, що кодують 
секреторну й мембрану 
форми протеїну Klotho [15].

Мембрана форма про-
теїну Klotho має транс-
мембраний, внутрішньо-
клітинний і позаклітинний 
домени. Матричні метало-
протеїнази родини ADAM 
(A Disintegrin And 
Metalloproteinase) відще-
плюють 10-й і 17-й поза-
клітинні домени, які по-
трапляють в позаклітинний 
простір. Це і є розчинна 
форма протеїну Klotho [15].

Ген Klotho кодує транс-
мембранний пептид Klotho, 
що є обов’язковим корецеп-

тором FGF-23 — гормону, який необхідний для регу-
ляції концентрації паратиреоїдного гормону, фосфору 
й вітаміну D [83, 88]. Шляхом стимулювання екскреції 
ниркового фосфату й зниження рівня сироваткового 
дигідроксивітаміну D

3
 Klotho індукує від’ємний фос-

фатний баланс [84, 89, 90].
Є три члени родини Klotho — трансмембранні про-

теїни різної довжини. Розчинні форми Klotho можуть 
бути отримані шляхом протеолітичного розщеплення 
трансмембранної форми β-секретазами [91].

У людини трансмембранна форма протеїну Klotho 
знаходиться в клітинній мембрані й апараті Гольджі, 
вона складається з 1012 амінокислот, має молекулярну 
вагу ~ 130 кДа і включає 3 домени: позаклітинний до-
мен і трансмембранний домен з коротким цитоплаз-
матичним доменом на С-кінці, а також має сигнальну 
послідовність на N-кінці [82, 91]. Позаклітинний домен 
має дві ділянки внутрішніх повторів (KL1і KL2) гомо-
логічних послідовностей β-глюкозидази зі збігом послі-
довностей від 20 до 40 %, короткий внутрішньоклітин-
ний домен має протяжність у 10 амінокислот [82, 91]. 

Є припущення, що між ділянками KL1 і KL2 роз-
міщений сайт, який бере участь у розщепленні транс-
мембранної форми. У людини переважає секреторна 
форма протеїну, що складається з 549 амінокислот. Се-
креторна форма є циркулюючим гуморальним факто-
ром [82] (див. рис. 2).

Дані проведених досліджень виявили, що в до-
рослих віком 20 років і старших концентрація проте-
їну Klotho в сироватці крові мала діапазон від 239 до 
1266 пг/мл [15].

Є припущення, що протеїн Klotho гальмує старіння 
через пригнічення внутрішньоклітинного інсуліну/

Рисунок 1
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Рисунок 3
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інсуліноподібного фактора росту 1 сигнального шля-
ху. Зменшення оксидантного стресу при збільшенні 
рівня протеїну Klotho через пригнічення шляху p53/
p21 є механізмом, що уповільнює старіння й онкоге-
нез [15, 92, 93].

Існує кілька потенційних механізмів, які сприяють 
антифіброзному ефекту Klotho при ХХН, наприклад 
інгібування передачі сигналів внутрішньоклітинного 
сигнального шляху Wnt, FGF23 і трансформуючого 
фактора росту  (TGF-β) [5, 11, 94–97].

У дистальних канальцях нирок спостерігаєть-
ся його найбільша експресія [88]. Циркулюючі рівні 
Klotho (розчинний α-Klotho) з’являються завдяки по-
заклітинному домену протеїну Klotho, їх вважають су-
рогатним маркером експресії Klotho в нирках і функці-
онального числа нефронів [83, 88].

Розчинний Klotho впливає на функцію ендотелію, 
оксидантний стрес, старіння й апоптоз клітин [88]. У 
пацієнтів із ХХН, ішемічною хворобою серця, цукро-
вим діабетом підтверджено зниження експресії гена 
Klotho й секреції протеїну Klotho [82]. Рівні сироватко-
вого протеїну Klotho з віком зменшуються [15].

FtА. Уперше FtА описав Педерсен у 1944 році й дав 
йому назву від латинського слова fetus через велику 
його кількість у фетальній сироватці теляти [98]. Піз-
ніше багатофункціональний фосфорильований глі-
копротеїн (відомий ще як альфа-2-Гереманс-Шмід) 
був відкритий Шмідтом, Геремансом і Бюргі в 1961 
році [99–102]. Він являє собою білок, що складається 
з довгого ланцюга А (282 амінокислоти) і коротко-
го ланцюга В (27 амінокислот), з’єднаних коротким 
ланцюгом з 40 амінокислот, масою від 52 до 60 кДа 
[99, 101–103].

У період внутрішньоутробного розвитку виявляєть-
ся експресія FtА в усіх основних органах і судинному 
сплетенні [98, 99]. У сироватці крові концентрація FtА 
коливається від 0,4 до 1,0 г/л [98, 100]. FtА синтезуєть-
ся переважно (> 95 %) в печінці (і має назву гепатокін), 
може синтезуватись в нирках, накопичується у великій 
кількості в кальцифікованій кістці, крові й спинномоз-
ковій рідині [98, 99, 103].

FtА має вплив на енергетичний гомеостаз, ріст 
клітин, адипоцити й процес запалення (може бути як 
позитивним, так і негативним білком гострої фази), 
взаємодіє з рецептором інсуліну, пригнічуючи його ти-
розинкіназу [99, 100, 104–113]. Є непрямим регулято-
ром запалення, кальцифікації, поляризації макрофагів 
і фіброзу в тканинах [98, 108, 114–119].

У кінці 1970-х років Лебретон з колегами відкрили, 
що FtА є одним з основних негативних білків гострої 
фази. З’являються короткі ізоформи транскрипційно-
го фактора C/EBP, які не можуть підтримувати базаль-
ну активність промотора печінки, на відміну від довгих 
ізоформ C/EBP, які переважають в гепатоцитах у спо-
кійному стані [98].

FtА відіграє важливу роль у профілактиці нирко-
вого літогенезу й ішемічної хвороби серця за рахунок 
пригнічення надмірної мінералізації [99, 120–124]. Че-
рез здатність пригнічувати апоптоз і посилювати фаго-

цитоз апоптотичних залишків FtА зменшує мінераліза-
ційний стрес [98, 125–128].

Також FtА є транспортним білком для фосфату 
й кальцію, що відіграє важливу роль у мінералізації 
кісток, через зв’язування дрібних кластерів фосфату 
і кальцію, тим самим запобігаючи їх росту, агрегації і 
випадінню мінералів, поглинанню клітинами цих роз-
чинних білково-мінеральних колоїдів, відомих як час-
тинки кальципротеїну (складаються з мономерів каль-
ципротеїну) [98, 104, 105, 129–133].

Місце зв’язування мінералів у FtА розміщується в 
N-кінцевому цистатиноподібному домені CY1 [98]. Не-
великі комплекси фосфату кальцію (кластери Познера) 
є кращим лігандом FtА, ніж іонний кальцій [98]. Дослі-
дження in vivo та in vitro виявили прямий вплив підви-
щеного рівня фосфату на функцію ендотелію [134].

Для насичених жирних кислот FtА є адаптерним 
білком (ендогенний ліганд), за допомогою якого вони 
активують Toll-подібний рецептор 4 [105, 108]. FtА ві-
діграє важливу роль у зв’язуванні мінералів, лектинів 
(у тому числі галектину-3) [108, 135–137] і ліпідів, бере 
участь в пригніченні передачі сигналу бета-фактора 
росту й антагонізації рецепторів інсуліну [98, 108, 138]. 
FtА є необхідним кофактором інгібування експресії 
прозапального цитокіну, фактора некрозу пухлини, ра-
зом зі спермідином, активуючи накопичення триацил-
гліцерину й NF-κB [98, 108] (див. рис. 3).

FtА, як і фетуїн В, багатий на гістидин, кініноген 
і глікопротеїн, належить до родини цистатинів 3-го 
типу, що є інгібітором цистеїнпептидази [98]. Досі не 
виявлено специфічної цільової пептидази для FtА [98].

FtА зазнає значних посттрансляційних модифікацій, 
таких як протеолітичний процесинг від одноланцюго-
вого попередника до циркулюючого дволанцюгового 
протеїну комплексу, N- і O-глікозилювання, сульфата-
ції і фосфорилювання треоніну й серину, які впливають 
на його активність і стабільність [98, 101, 102, 139].

Висновки
Рання діагностика ХХН, виявлення пацієнтів, у 

яких вона може прогресувати до термінальної стадії 
ниркової недостатності, є актуальними й дуже важли-
вими. Показники, що включають рівень креатиніну, 
рШКФ та протеїнурію, не зовсім задовольняють клі-
нічну потребу. Тому для оцінки прогресування ХХН 
необхідні нові біомаркери. Причому не один біомар-
кер, а комбінація різноманітних біомаркерів. Отже, 
як ми бачимо, такі маркери пошкодження нирок, як 
UMOD, протеїн Klotho, FtА, є актуальними на даний 
час, і не лише для ранньої діагностики, вони можуть 
стати основою для створення нових ліків у нефрології 
для лікування пацієнтів із ХХН, у тому числі з діабе-
тичною нефропатією. Для цих біомаркерів характерне 
виявлення ранніх пошкоджень, локалізації пошко-
дження. Вони дають оцінку щодо подальшого прогре-
сування захворювання, тяжкості й смерті [140].

Конфлікт інтересів. Автор заявляє про відсутність 
конфлікту інтересів і власної фінансової зацікавленос-
ті при підготовці даної статті.

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/acute-phase-proteins
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Біомаркери ХХН
Уромодулін Білок Клото Фетуїн А

Синтезується виключно епітелієм 
товстого висхідного відділу петлі 

Генле.

Синтезується переважно в дис-
тальних звивистих канальцях нирок 
та епітеліальних клітинах судинного 

сплетення в головному мозку.

Синтезується переважно  
(понад 95 %) у печінці й нирках.

Для цих біомаркерів характерне виявлення ранніх пошкоджень, локалізації пошкодження. Дають оцінку 
щодо подальшого прогресування захворювання, тяжкості й смерті.

Biomarkers of CKD
Uromodulin Klotho protein Fetuin A

Synthesized by uroepithelium lining 
the thick ascending limb of Henle’s 

loop.

Synthesized mainly in the distal 
convoluted tubules of the kidneys 
and epithelial cells of the vascular 

plexus in the brain.

Synthesized mainly (more 95 %)  
in the liver and kidneys.

They give an estimate concerning further progression of the disease, servility and death.
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The value of proteomic studies of the latest markers of kidney damage in the urine to assess the course,  
progression and complications in patients with CKD

Abstract. Сhronic kidney Disease (CKD) is the cause of both mor-
bidity and mortality worldwide. In Ukraine, 12 % of the population 
is diagnosed with CKD. Significantly worsen the quality of life in pa-
tients with CKD progression of renal fibrosis and impaired mineral 
homeostasis. Early diagnosis and treatment are the main measures 
to prevent CKD progression and delay adverse effects. Deficiency of 
early, non-invasive biomarkers adversely affects the ability to rapidly 

detect and treat CKD. Proximal tubular lesions play an important 
role in the progression of CKD. There are new markers of kidney 
damage, such as uromodulin, Klotho protein and post-translational 
modifications of fetuin A. Treatment of CKD in the early stages may 
improve renal function and/or slow the progression of CKD.
Key words: chronic kidney disease; hyperphosphatemia; uromo
dulin; Klotho protein; fetuin A


