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Solid organ transplantation is a life-saving procedure 
for various end-stage diseases, but the inherent requirement 
for life-long immunsuppression for preventing graft rejec-
tion comes with many side effects, such as increased risk of 
infection, neoplasms as well as nephrotoxicity and diabeto-
genicity [1–4]. 

Long-term immunsuppressive therapy represents a huge 
burden on transplant recipients, but currently cannot be 
omitted. Research in tolerance has elucidated mechanistic 
pathways of rejection, T cell regulation and T cell activation 
previously unknown [4]. Diagnostic assays to identify tole
rance and distinguish it from “non-tolerance” are needed, 
and progress continues in this area. The work by some groups 
suggest that both blood and liver tissue gene expression can 
predict the outcome of immunsuppression withdrawal [5]. It 
is important to notice that, the genetic signature of tolerance 
in liver transplantation may differ significantly from that of 
kidney transplantation for some reasons that are unknown at 
this time [6]. Off course the tolerogenic environment of the 
liver plays a very important role in this field.

So minimization or withdrawal of immunsuppressive 
drugs remains a major goal in transplantation, and may be 
achieved in patients who have developed tolerance towards 
their grafts.
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In clinical practice, operational tolerance is defined as 
“a well-functionning graft lacking histological signs of re-
jection, in the absence of any immunosuppressive drugs in 
an immunucompetent host” [7, 8].

An animal is formally proven to be tolerant when in the 
absence of immunosuppression, a second graft from the 
same donor is accepted, while a graft from a third-party do-
nor is rejected.

In general, operationally tolerant transplant recipient can-
not be identified prospectively. Due to the lack of biomarkers 
to guide weaning or cessation of immunsuppressive drugs, the 
majority of recipients will rely on life-long immunsuppres-
sive therapy. This situation is especially problematic in kidney 
transplantation where tolerance is a very rare event [9].

In general there are two kinds of tolerance; central (in-
trathymic) and peripheral (non-thymic).

Positive selection, also called thymic education, ensures 
that only clones with TCRs and moderate affinity for self-
MHC are allowed to develop.

Negative selection by means of apoptosis occurs when T 
cells have extremely high affinity for the MHC-self-peptide 
complex.

Many potentially reactive T cells escape thymic selec-
tion; this reflects that many antigens are absent intrathymi-
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cally or present at insufficient levels to induce tolerance in 
the thymus; so several non-thymic mechanisms prevent au-
toimmunity and are also capable of rendering peripheral T 
cell repertoires tolerant. These mechanisms are:

— sequestration of antigens into privileged sites;
— apoptosis of T cells caused by persistent activation or 

neglect;
— clonal anergy (lack of costimulation) (CD28-

CD80/86, CD40-CD40L);
— regulatory T cells (Tregs, CD4+CD25+FoxP3+ T 

cells).
Clinical research to induce full or partial tolerance 

in transplant patients has been induced in allograft trans-
plantation in many centers. A state of indefinite survival of 
a well-functionning allograft without the need for main-
tenence immunsuppression was the main target of the re-
searchers. Rare cases of operational tolerance after trans-
plantation with complete cessation of immunosuppressive 
therapy have been reported [10, 11].

Full tolerance was achieved with myeloablative therapy 
before organ transplantation in combination with induced 
donor chimerism in hematologic malignancies treated with 
bone marrow transplantation [12].

At present partial tolerance or minimal immunsuppres-
sion is possible. This partial or incomplete, donor-specific 
tolerance has been termed prope tolerance or minimal im-
munsuppression tolerance [13, 14].

Stable graft function for 1 year or more referred as func-
tional or operational tolerance [15, 16].

The reasons for graft loss can be broadly classified into 
three categories:

1) inflammation induced reactions against graft tissues, 
specifically ischemia-reperfusion (I-R) injury;

2) immun-initiated reactions against graft tissues;
3) direct organ toxicity by immunsuppressive drugs.
When an alloantigen is recognized, the innate and adap-

tive immun systems respond synergistically to reject the al-
lograft through non-exclusive pathways, including contact-
dependent T cell cytotoxicity, granulocyte activation by 
either Th1- or Th2-derived cytokines, NK cell activation, 
alloantibody production and complement activation [17].

Improvements in the short term success of renal and 
extra-renal transplantation have had a minimal impact on 
long term success and the rate of late graft loss is essentially 
unchanged [18, 19]. The advantages associated with the 
avoidance of chronic immunsuppression continue to drive 
the enthusiasm for implementing approaches to induce to
lerance to transplanted organ allografts as the term chronic 
rejection is mainly characterized by antibody-mediated re-
jection and a score to reflect insterstitial fibrosis and tubular 
atrophy [20].

Strategies for inducing transplantation 
tolerance

There are two obligatory components to achieving trans-
plantation tolerance: depletion of alloreactive Tconv and 
upregulation of alloreactive Treg cells. The balance between 
graft destruction and regulation can be shifted using stra
tegies to inhibit the activity of Tconv cells and/or increase 

the relative frequency or functional activity of alloantigen-
reactive Treg cells.

Mixed chimeric and cellular tolerogenic therapies 
are being trialed where drug-based therapies have failed 
[21, 22].

Manipulating innate immune system
TLRs drive innate immune responses as part of I-R 

(ischemia-reperfusion) injury and this leads to the subse-
quent initiation of adaptive alloimmune responses; so de-
ficiency in the TLR adaptor protein MyD88 leads to donor 
antigen-specific tolerance. MyD88 deficiency is associated 
with an altered balance of Tregs over Tconv cells promoting 
tolerance instead of rejection.

Lymphodepletional strategies
Lymphodepletion in the form of “induction therapy” is 

an effective strategy for adressing the precursor frequency of 
alloreactive Tconv cells at the time of organ transplantation 
and preventing acute allograft rejection. However, ongoing 
maintenance therapy during post-deletional cell repopula-
tion is necessary to prevent T memory cells from driving 
rejection and alloantibody formation (mAb, radiation and 
cytotoxic drugs are necessary) [23].

Cellular therapy
A. İn addition to CD4+ CD25+ FoxP3+ nTregs and 

iTregs; Tr1 cells produce large amounts of IL-10 [24]; Th3 
cells produce TGFb [25]; Tr35 cells produce IL-35; CD8+ 
CD28-cells [26] and CD3+CD4-CD8-cells [27] and NKT 
cells [28] have all been reported to exert regulatory effect on 
alloimmune responses. Suppression of alloreactive T cells 
permits long-term graft survival and, at times, operational 
tolerance [29–31].

Using rabbit ATG and Rituximab (plus FK and Siroli-
mus) for tolerance induction in living-donor renal recipient 
[32].

Alemtuzumab (Campath-1H), mAb to CD 52, found 
densely distributed on T and B cells and NK cells [33]. 
Alemtuzumab in combination therapy with costimulation 
blockade, regulatory T cell infusion and donor stem cell 
transfusion are some of the novel approaches to tolerance 
induction currently in study [34–38].

В. B cells have also been shown to serve a regulatory role; 
unlike Tregs there are no validated molecular or phenotipic 
markers to define Bregs, so they are currently defined on the 
functional basis of their IL-10 production [39]. 

Particularly the role of transitional B cells is important; 
they represent a regulatory B cell population based on their 
increased IL-10 production; meanwhile it is noticed that 
no difference in B cell subsets (total, naive, transitional) or 
inhibitory cytokines (IL-10 and TGFb) was detected when 
compared to healthy controls [40]. On the other hand B 
cells play a major role in chronic rejection, as donor-speci
fic alloantibodies have been linked to chronic rejection and 
lon-term graft failure [41–44]. Long-term allograft ac-
ceptance has been achieved by augmenting traditional im-
munotherapy with B cell depleting antibodies [45]. BAFF 
(B cell activating factor) is involved in B cell survival, pro-
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liferation, and maturation. It has been correlated with in-
creased PRAs, DSA (donor specific alloantibodies), B cell 
repopulation and C4d+ renal allograft rejection [46–48]. Its 
blockade using human recombinant mAb Belimumab pro-
moted tolerance in murine models by:

— depleting follicular and alloreactive B cells;
— promoting an immature/transitional B cell pheno-

type;
— abrogating the alloantibody response;
— sustaining a regulatory cytokine environment [49, 50].
С. Costimulation Blockade: alloreactive T cell activa-

tion requires signal 1 and signal 2 [51]. Blockade of costim-
ulation effectively prevents T cell activation and allograft 
rejection. T cells become anergic and they express ICOS 
(inducible costimulator) and play a regulatory role. Costim-
ulatory signals of the CD28 : B7 and CD40 : CD40L are 
the most studied and most important. CTLA-4 binds with 
10–20 folds higher affinity than CD28 to B7 on APCs and 
inhibits the T cell. Also this ligation induces IDO promot-
ing the suppressive functions in CTLA-4 regulatory CD4+ 
cells [52].

Abatacept and Belatacept, fusion proteins composed of 
CTLA-4 and IgG1, confer potent inhibition of alloreactive 
T cell responses. Belatacept is more effective compared to 
Abatacept [53]. However lymphoproliferative disorder in 
the belatacept-treated patients are more important than 
calcineurin blockers [54–56].

D. Tolerogenic DCs, macrophages, and MSCs (mesen-
chymal stromal cells).

The tolerogenic properties of DCs include the ability to 
acquire and present antigen, expand and respond to anti-
gen-specific Tregs, constitutively express low levels of MHC 
and costimulatory molecules, produce high IL-10 and 
TGFb and low IL-12, resist activation by danger signals and 
CD40 ligation, resist killing by NK or T cells and promote 
apoptosis of effector T cells [57].

İ. Tregs stimulated by Rapamycin-conditionned DCs 
suppress more effectively antigen-specific T cell prolifera-
tion [58].

ii. IL-10-generated human tolerogenic DCs were opti-
mal in producing highly suppressive Tregs [59].

— TAIC (transplant acceptance-inducing cell) is an im-
munoregulatory macrophage. They are IFNg-stimulated 
monocyte-derived cells (IFNg-MdC) described as a non-
DC and more mature form of resting macrophage expres
sing F4/80, CD11, CD86, PDL-1. Their suppressive effect 
is through the enrichment of CD4+CD25+FoxP3 cells and 
cell contact-and caspase-dependent depletion of activated 
T cells [60].

— Mesenchymal stromal cells (MSCs) have immuno-
modulatory properties, they inhibit T cell activation and 
proliferation possibly due to the production of nitric oxi
de and IDO (indoleamine-2,3-dioxygenase) [61]. MSCs 
harvested from term fetal membranes have been shown to 
significantly suppress allogeneic lymphocyte proliferation 
in mixed lymphocye reactions (MLR) by suppressing IFNg 
and IL-17 production and increasing IL-10 production 
[62, 63].

Е. Chimerism-based approaches.

Chimerism is the concept that cells of different donor 
origins can coexist in the same organism. It might be derived 
into “mixed” or “microchimerism” and “full” or “macro-
chimerism”. 

Mixed is defined as the presence of both donor and re-
cipient cell lineages coexisting in the recipient bone marrow. 

Full chimerism implies complete elimination of recipi-
ent hematopoietic lineages and population of the recipient 
bone marrow by 100 % donor cells [64]. 

The main aim should be that donor cells that could at-
tack the host and cause GVHD need to be eliminated while 
at the same time preserving the recipient’s ability to produce 
immune populations that can defend against infections [65]. 
This might be realised by partiall irradiation of the recipient 
bone marrow with peripheral deletion of recipient T cells 
allowed for the development of both donor and recipient 
hematopoietic cells and induction of tolerance to donor tis-
sue without the need for full myoablation [66–68]. Lastly 
in kidney transplantation, as the tolerance has two compo-
nents, central and peripheral, the induction strategy consists 
of thymic irradiation to allow for development of a donor T 
cell reservoir in these organ recipients [69–71].

Kidney Transplant Tolerance
1. CD20 gene expression was significantly increased in 

urinary sediments of operationally tolerant KTRs (Kidney 
trx recipients) [72].

2. An increase in the percentage or absolute number of B 
cells in the peripheral blood of operationally tolerant KTRs 
[73–76].

3. Enrichment of naive and transitional B cells at the ex-
pense of memory B cells [76].

4. Human CD24hiCD38hi B cells have recently been 
described as containing regulatory B cells (Bregs) [77].

5. Relative increase in the inhibitory Fc receptor FcgIIb 
and an increase in the negative modulator BANK1 (B-cell 
scaffold protein with ankyrin repeats 1) [76].

6. An increase proportion of central memory cells and a 
decreased proportion of effector cells [78].

7. Upregulation of many TGFb regulated genes, as well 
as downregulation of costimulatory and T cell activation 
genes [79].

8. A high ratio of expression of FoxP3 to MAN1A2 (al-
fa-1,2-mannosidase) [73].

Conclusions
Limited data exist on the capacity of the currently de-

fined biomarkers of tolerance to identify patients in which 
immunosuppressive drugs can be withdrawn.

Induction of chimerism in combination with kidney 
transplantation might provide development of central tole
rance by deletion [80].

Alemtuzumab (Campath-1H) treatment is promising 
with minimal immunsuppression to creat “Prope Tole
rance” [81, 82].

The proteosome inhibitor Bortezomib in combination 
with donor specific transfusion (DST) might be suitable 
since Bortezomib induces apoptosis of highly activated lym-
phocyte including plasma cells, B cells and T cells [83, 84].
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Майбутнє трансплантації органів: органоспецифічна толерантність

Резюме. Трансплантація між двома особами, які не є ге-
нетично ідентичними, називається алотрансплантацією. 
Донорські органи та тканини можуть бути отримані від 
живих людей або від людей, які померли через серйозну 
травму мозку або порушення кровообігу. Алотранспланта-
ція може призвести до процесу відторгнення, коли імунна 
система реципієнта атакує чужорідний донорський орган 
або тканину та руйнує їх. Реципієнту може знадобитися 
приймати імуносупресивні ліки протягом усього життя, 
щоб зменшити ризик відторгнення донорського органа. Як 
правило, медикаментозно індукована імуносупресія про-

водиться для запобігання відторгненню трансплантата. 
Побічні ефекти, пов’язані з цими препаратами, та ризики 
довготривалої імуносупресії представляють для клініциста 
серйозну проблему. Імунна толерантність, або імунологічна 
толерантність, або імунотолерантність, — це стан несприй-
нятливості імунної системи до впливу речовин або тканин, 
що здатні викликати імунну відповідь у даному організмі. Їй 
присвячена дана стаття.
Ключові слова: трансплантація органів; імуносупресивна 
терапія; відторгнення; імунна толерантність; регуляторні клі-
тини; химеризм; огляд
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Будущее трансплантации органов: органная толерантность

Резюме. Трансплантация между двумя лицами, которые 
не являются генетически идентичными, называется алло-
трансплантацией. Донорские органы и ткани могут быть 
от живых людей или людей, умерших из-за серьезной че-
репно-мозговой травмы или нарушения кровообращения. 
Аллотрансплантация может вызвать процесс отторжения, 
когда иммунная система реципиента атакует чужеродный 
донорский орган или ткань и разрушает их. Реципиенту мо-
жет потребоваться принимать иммуносупрессивные сред-
ства на протяжении всей жизни, чтобы снизить риск оттор-
жения донорского органа. Как правило, индуцированная 
иммуносупрессия назначается, чтобы не дать организму 

отторгнуть трансплантат. Неблагоприятные эффекты, свя-
занные с этим назначением иммунодепресантов, и риски 
долгосрочной иммуносупрессии представляют для кли-
ницистов серьезную проблему. Иммунная толерантность, 
или иммунологическая толерантность, или иммунотоле-
рантность, — это состояние невосприимчивости иммунной 
системы к веществам или тканям, которые способны вы-
зывать иммунный ответ в данном организме. Ей посвящена 
данная статья.
Ключевые слова: трансплантация органов; иммуносупрес-
сивная терапия; отторжение; иммунная толерантность; регу-
ляторные клетки; химеризм; обзор


