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Abstract. A transplant between two people who are not genetically identical is called an allotransplant
and the process is called allotransplantation. Donor organs and tissues can be from people who are living,
or people who have died because of a significant brain injury or lack of circulation. Allofransplantation
can create arejection process where the immune system of the recipient attacks the foreign donor organ
or tissue and destroys it. The recipient may need to take immunosuppressive medication for the rest of their
life fo reduce the risk of rejection of the donated organ. In general, deliberately induced immunosuppres-
sion is performed fo prevent the body from rejecting an organ fransplant. The adverse effects associated
with these agents and the risks of long-ferm immunosuppression present a number of challenges for the
clinician. Immune tolerance, orimmunological tolerance, orimmunotolerance, is a state of unresponsive-
ness of the immune system to substances or tissue that have the capacity to elicit an immune response in
a given organism.
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Solid organ transplantation is a life-saving procedure
for various end-stage diseases, but the inherent requirement
for life-long immunsuppression for preventing graft rejec-
tion comes with many side effects, such as increased risk of
infection, neoplasms as well as nephrotoxicity and diabeto-
genicity [1—4].

Long-term immunsuppressive therapy represents a huge
burden on transplant recipients, but currently cannot be
omitted. Research in tolerance has elucidated mechanistic
pathways of rejection, T cell regulation and T cell activation
previously unknown [4]. Diagnostic assays to identify tole-
rance and distinguish it from “non-tolerance” are needed,
and progress continues in this area. The work by some groups
suggest that both blood and liver tissue gene expression can
predict the outcome of immunsuppression withdrawal [5]. It
is important to notice that, the genetic signature of tolerance
in liver transplantation may differ significantly from that of
kidney transplantation for some reasons that are unknown at
this time [6]. Off course the tolerogenic environment of the
liver plays a very important role in this field.

So minimization or withdrawal of immunsuppressive
drugs remains a major goal in transplantation, and may be
achieved in patients who have developed tolerance towards
their grafts.

In clinical practice, operational tolerance is defined as
“a well-functionning graft lacking histological signs of re-
jection, in the absence of any immunosuppressive drugs in
an immunucompetent host” [7, 8].

An animal is formally proven to be tolerant when in the
absence of immunosuppression, a second graft from the
same donor is accepted, while a graft from a third-party do-
nor is rejected.

In general, operationally tolerant transplant recipient can-
not be identified prospectively. Due to the lack of biomarkers
to guide weaning or cessation of immunsuppressive drugs, the
majority of recipients will rely on life-long immunsuppres-
sive therapy. This situation is especially problematic in kidney
transplantation where tolerance is a very rare event [9].

In general there are two kinds of tolerance; central (in-
trathymic) and peripheral (non-thymic).

Positive selection, also called thymic education, ensures
that only clones with TCRs and moderate affinity for self-
MHC are allowed to develop.

Negative selection by means of apoptosis occurs when T
cells have extremely high affinity for the MHC-self-peptide
complex.

Many potentially reactive T cells escape thymic selec-
tion; this reflects that many antigens are absent intrathymi-

©2021.The Authors. This is an open access article under the terms of the Creative Commons Attribution 4.0 International License, CCBY, which allows othersto  freely distribute the published

article, with the obligatory reference to the authors of original works and original publication in this journal.

For correspondence: Yusuf Ercin Sonmez, Istambul, Turkey; e-mail: yusufercinsonmez57@gmail.com

Full list of author information is available at the end of the article.

130

Pocki, ISSN 2307-1257 (print), ISSN 2307-1265 (online)

Vol. 10, No. 3, 2021


https://creativecommons.org/licenses/by/4.0/
mailto:yusufercinsonmez57@gmail.com
https://orcid.org/0000-0002-8724-423X

3anpouueHi crtarti /| Guest Arficles

cally or present at insufficient levels to induce tolerance in
the thymus; so several non-thymic mechanisms prevent au-
toimmunity and are also capable of rendering peripheral T
cell repertoires tolerant. These mechanisms are:

— sequestration of antigens into privileged sites;

— apoptosis of T cells caused by persistent activation or
neglect;

— clonal anergy (lack of costimulation) (CD28-
CD80/86, CD40-CD40L);

— regulatory T cells (Tregs, CD4+CD25+FoxP3+ T
cells).

Clinical research to induce full or partial tolerance
in transplant patients has been induced in allograft trans-
plantation in many centers. A state of indefinite survival of
a well-functionning allograft without the need for main-
tenence immunsuppression was the main target of the re-
searchers. Rare cases of operational tolerance after trans-
plantation with complete cessation of immunosuppressive
therapy have been reported [10, 11].

Full tolerance was achieved with myeloablative therapy
before organ transplantation in combination with induced
donor chimerism in hematologic malignancies treated with
bone marrow transplantation [12].

At present partial tolerance or minimal immunsuppres-
sion is possible. This partial or incomplete, donor-specific
tolerance has been termed prope tolerance or minimal im-
munsuppression tolerance [13, 14].

Stable graft function for 1 year or more referred as func-
tional or operational tolerance [15, 16].

The reasons for graft loss can be broadly classified into
three categories:

1) inflammation induced reactions against graft tissues,
specifically ischemia-reperfusion (I-R) injury;

2) immun-initiated reactions against graft tissues;

3) direct organ toxicity by immunsuppressive drugs.

When an alloantigen is recognized, the innate and adap-
tive immun systems respond synergistically to reject the al-
lograft through non-exclusive pathways, including contact-
dependent T cell cytotoxicity, granulocyte activation by
either Th1- or Th2-derived cytokines, NK cell activation,
alloantibody production and complement activation [17].

Improvements in the short term success of renal and
extra-renal transplantation have had a minimal impact on
long term success and the rate of late graft loss is essentially
unchanged [18, 19]. The advantages associated with the
avoidance of chronic immunsuppression continue to drive
the enthusiasm for implementing approaches to induce to-
lerance to transplanted organ allografts as the term chronic
rejection is mainly characterized by antibody-mediated re-
jection and a score to reflect insterstitial fibrosis and tubular
atrophy [20].

Strategies for inducing transplantation
tolerance

There are two obligatory components to achieving trans-
plantation tolerance: depletion of alloreactive Tconv and
upregulation of alloreactive Treg cells. The balance between
graft destruction and regulation can be shifted using stra-
tegies to inhibit the activity of Tconv cells and/or increase

the relative frequency or functional activity of alloantigen-
reactive Treg cells.

Mixed chimeric and cellular tolerogenic therapies
are being trialed where drug-based therapies have failed
[21, 22].

Manipulating innate immune system

TLRs drive innate immune responses as part of I-R
(ischemia-reperfusion) injury and this leads to the subse-
quent initiation of adaptive alloimmune responses; so de-
ficiency in the TLR adaptor protein MyD88 leads to donor
antigen-specific tolerance. MyD88 deficiency is associated
with an altered balance of Tregs over Tconv cells promoting
tolerance instead of rejection.

Lymphodepletional strategies

Lymphodepletion in the form of “induction therapy” is
an effective strategy for adressing the precursor frequency of
alloreactive Tconv cells at the time of organ transplantation
and preventing acute allograft rejection. However, ongoing
maintenance therapy during post-deletional cell repopula-
tion is necessary to prevent T memory cells from driving
rejection and alloantibody formation (mAb, radiation and
cytotoxic drugs are necessary) [23].

Cellular therapy

A. In addition to CD4+ CD25+ FoxP3+ nTregs and
iTregs; Trl cells produce large amounts of IL-10 [24]; Th3
cells produce TGFb [25]; Tr35 cells produce IL-35; CD8+
CD28-cells [26] and CD3+CD4-CDS8-cells [27] and NKT
cells [28] have all been reported to exert regulatory effect on
alloimmune responses. Suppression of alloreactive T cells
permits long-term graft survival and, at times, operational
tolerance [29—31].

Using rabbit ATG and Rituximab (plus FK and Siroli-
mus) for tolerance induction in living-donor renal recipient
[32].

Alemtuzumab (Campath-1H), mAb to CD 52, found
densely distributed on T and B cells and NK cells [33].
Alemtuzumab in combination therapy with costimulation
blockade, regulatory T cell infusion and donor stem cell
transfusion are some of the novel approaches to tolerance
induction currently in study [34—38].

B. B cells have also been shown to serve a regulatory role;
unlike Tregs there are no validated molecular or phenotipic
markers to define Bregs, so they are currently defined on the
functional basis of their IL-10 production [39].

Particularly the role of transitional B cells is important;
they represent a regulatory B cell population based on their
increased I1L-10 production; meanwhile it is noticed that
no difference in B cell subsets (total, naive, transitional) or
inhibitory cytokines (IL-10 and TGFb) was detected when
compared to healthy controls [40]. On the other hand B
cells play a major role in chronic rejection, as donor-speci-
fic alloantibodies have been linked to chronic rejection and
lon-term graft failure [41—44]. Long-term allograft ac-
ceptance has been achieved by augmenting traditional im-
munotherapy with B cell depleting antibodies [45]. BAFF
(B cell activating factor) is involved in B cell survival, pro-
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liferation, and maturation. It has been correlated with in-
creased PRAs, DSA (donor specific alloantibodies), B cell
repopulation and C4d+ renal allograft rejection [46—48]. Its
blockade using human recombinant mAb Belimumab pro-
moted tolerance in murine models by:

— depleting follicular and alloreactive B cells;

— promoting an immature/transitional B cell pheno-
type;

— abrogating the alloantibody response;

— sustaining a regulatory cytokine environment [49, 50].

C. Costimulation Blockade: alloreactive T cell activa-
tion requires signal 1 and signal 2 [51]. Blockade of costim-
ulation effectively prevents T cell activation and allograft
rejection. T cells become anergic and they express ICOS
(inducible costimulator) and play a regulatory role. Costim-
ulatory signals of the CD28 : B7 and CD40 : CD40L are
the most studied and most important. CTLA-4 binds with
10—20 folds higher affinity than CD28 to B7 on APCs and
inhibits the T cell. Also this ligation induces IDO promot-
ing the suppressive functions in CTLA-4 regulatory CD4+
cells [52].

Abatacept and Belatacept, fusion proteins composed of
CTLA-4 and IgG1, confer potent inhibition of alloreactive
T cell responses. Belatacept is more effective compared to
Abatacept [53]. However lymphoproliferative disorder in
the belatacept-treated patients are more important than
calcineurin blockers [54—56].

D. Tolerogenic DCs, macrophages, and MSCs (mesen-
chymal stromal cells).

The tolerogenic properties of DCs include the ability to
acquire and present antigen, expand and respond to anti-
gen-specific Tregs, constitutively express low levels of MHC
and costimulatory molecules, produce high IL-10 and
TGFb and low 1L-12, resist activation by danger signals and
CDA40 ligation, resist killing by NK or T cells and promote
apoptosis of effector T cells [57].

I. Tregs stimulated by Rapamycin-conditionned DCs
suppress more effectively antigen-specific T cell prolifera-
tion [58].

ii. IL-10-generated human tolerogenic DCs were opti-
mal in producing highly suppressive Tregs [59].

— TAIC (transplant acceptance-inducing cell) is an im-
munoregulatory macrophage. They are IFNg-stimulated
monocyte-derived cells (IFNg-MdC) described as a non-
DC and more mature form of resting macrophage expres-
sing F4/80, CD11, CD86, PDL-1. Their suppressive effect
is through the enrichment of CD4+CD25+FoxP3 cells and
cell contact-and caspase-dependent depletion of activated
T cells [60].

— Mesenchymal stromal cells (MSCs) have immuno-
modulatory properties, they inhibit T cell activation and
proliferation possibly due to the production of nitric oxi-
de and IDO (indoleamine-2,3-dioxygenase) [61]. MSCs
harvested from term fetal membranes have been shown to
significantly suppress allogeneic lymphocyte proliferation
in mixed lymphocye reactions (MLR) by suppressing IFNg
and IL-17 production and increasing 1L-10 production
[62, 63].

E. Chimerism-based approaches.

Chimerism is the concept that cells of different donor
origins can coexist in the same organism. It might be derived
into “mixed” or “microchimerism” and “full” or “macro-
chimerism”.

Mixed is defined as the presence of both donor and re-
cipient cell lineages coexisting in the recipient bone marrow.

Full chimerism implies complete elimination of recipi-
ent hematopoietic lineages and population of the recipient
bone marrow by 100 % donor cells [64].

The main aim should be that donor cells that could at-
tack the host and cause GVHD need to be eliminated while
at the same time preserving the recipient’s ability to produce
immune populations that can defend against infections [65].
This might be realised by partiall irradiation of the recipient
bone marrow with peripheral deletion of recipient T cells
allowed for the development of both donor and recipient
hematopoietic cells and induction of tolerance to donor tis-
sue without the need for full myoablation [66—68]. Lastly
in kidney transplantation, as the tolerance has two compo-
nents, central and peripheral, the induction strategy consists
of thymic irradiation to allow for development of a donor T
cell reservoir in these organ recipients [69—71].

Kidney Transplant Tolerance

1. CD20 gene expression was significantly increased in
urinary sediments of operationally tolerant KTRs (Kidney
trx recipients) [72].

2. An increase in the percentage or absolute number of B
cells in the peripheral blood of operationally tolerant KTRs
[73-76].

3. Enrichment of naive and transitional B cells at the ex-
pense of memory B cells [76].

4. Human CD24hiCD38hi B cells have recently been
described as containing regulatory B cells (Bregs) [77].

5. Relative increase in the inhibitory Fc receptor Fcgllb
and an increase in the negative modulator BANK1 (B-cell
scaffold protein with ankyrin repeats 1) [76].

6. An increase proportion of central memory cells and a
decreased proportion of effector cells [78].

7. Upregulation of many TGFb regulated genes, as well
as downregulation of costimulatory and T cell activation
genes [79].

8. A high ratio of expression of FoxP3 to MAN1A2 (al-
fa-1,2-mannosidase) [73].

Conclusions

Limited data exist on the capacity of the currently de-
fined biomarkers of tolerance to identify patients in which
immunosuppressive drugs can be withdrawn.

Induction of chimerism in combination with kidney
transplantation might provide development of central tole-
rance by deletion [80].

Alemtuzumab (Campath-1H) treatment is promising
with minimal immunsuppression to creat “Prope Tole-
rance” [81, 82].

The proteosome inhibitor Bortezomib in combination
with donor specific transfusion (DST) might be suitable
since Bortezomib induces apoptosis of highly activated lym-
phocyte including plasma cells, B cells and T cells [83, 84].
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ManbyTHE TPAHCNAQHTALT OPraHiB: opraHocneundiyHa TOAePAHTHICTb

Pe3rome. TpancruiaHTawLis Mix gBoMa ocobaMu, fIKi He € re-
HETMYHO iJEHTUYHUMM, HA3UBAETHCS aJOTPAHCIIAHTALIEO.
JIOHOPCBbKi OpraHM Ta TKAaHMHU MOXYTh OyTHM OTpUMaHi Bimx
KUBUX JIIOfei abo Bim JIomeid, sSIKi MOMepJIM Yepe3 cepiio3Hy
TpaBMy MO3KY a00 MOpYIIEeHHsI KPOBOOGIry. AJoTpaHCIIaHTa-
11is1 MOXe MPU3BECTH 0 MPOLIeCy BiATOPTHEHHsI, KOJIU iMyHHA
cucTeMa peluIli€eHTa aTaKye 4yXOpiIZHUN TOHOPCHKUII OpraH
abo TKaHUHY Ta pyiHye ix. PeuumieHTYy Moxe 3HamOOUTHCS
MpUiitMaTh iMYHOCYNPECHBHI JIiIKHM TPOTSITOM YChOTO 3KUTTS,
1100 3MEHIIUTH PU3UK BiITOPTHEHHS JOHOPCHKOTO opraHa. Sk
MpaBua0, MEIUKAMEHTO3HO iHIyKOBaHa iMYHOCYMpECisli Mpo-

Yusuf Ercin Sonmez
Istambul, Turkey

BOAUTBCS Uil 3amoOiraHHsl BiITOPTHEHHIO TpaHCIUIAHTATa.
[To6iuni edekTu, MoB’s13aHi 3 UUMU MpenapaTaMu, Ta PUUKHU
JMIOBrOTPUBAJIOIl iMYHOCYMpecCii MpeaCcTaBIsIOTh MJIs KIiHiuucTa
cepiio3Hy mpobiemy. IMyHHa ToJIepaHTHICTh, 400 iMyHOJIOTiYHA
TOJIEpaHTHICTh, a00 IMYHOTOJIEPAHTHICTb, — 1I€ CTAH HECIIpUIi-
HSTJIMBOCTI iMyHHOI CUCTEMHM [0 BIUIMBY PEYOBUH a00 TKAHUH,
1110 31aTHI BUKJIMKATY IMyHHY Bi/lIOBinb y 1aHOMY opraHismi. [it
MPUCBSIYEHA aHa CTaTTS.

Ki1o4oBi cj10Ba: TpancraHTtanis opraHis; iMyHOCynpecUMBHA
Tepalrist; BiTTOPTHeHHS; iMyHHAa TOJEPAHTHICTh; PETY/ISITOPHI KJTi-
TUHM; XUMEPU3M; OTJISIT

ByAyLiee TPAHCMNAGHTALMN OPFrOHOB: OPraHHAS TOA@PAHTHOCTb

Pe3iome. Tpancrmanrauus Mexmy OByMS JMLAMH, KOTOPBIE
He SIBJISIIOTCSI TEHETUYECKM MIECHTUYHBIMU, HA3bIBACTCS ajljlo-
TpaHCIUIaHTaluue. JJoHopcKue opraHbl U TKaHU MOTYT ObITh
OT XXKMBBIX JIIOJEH WM JIOIei, YMEpPIIUX U3-3a CEPbE3HOU ye-
PEMHO-MO3rOBOI TPAaBMbl MJIW HapyIIEHUs] KPOBOOOpPAILIEHUSI.
AJITOTPAHCIUIAHTALIMSI MOXET BbI3BaTh IMPOLIECC OTTOPXKEHMUS,
KOTjla UMMYHHasl CUCTeMa PELMITUEeHTa aTaKyeT YyXKepOIHbIii
MOHOPCKWI OpraH WIW TKaHb U pa3pyiiaeTt ux. PerumnueHty Mmo-
JKET MOTPeOoBaThCSI MPUHUMATh UMMYHOCYIIPECCUBHBIE Cpell-
CTBa Ha MPOTSIKEHUU BCEM KU3HU, YTOOBI CHU3UTDH PUCK OTTOP-
JKEHMSI IOHOpPCKOoro opraHa. Kak mpaBuio, MHAYLMPOBaHHask
MMMYHOCYTIPpECCUSI Ha3HAyaeTcsi, YToObl He aThb OpPraHUu3My

OTTOPTrHYTH TpaHcIUIaHTaT. HebmarompustHbie 3(p(peKTh, CBSI-
3aHHbIE C 3TUM Ha3HAYEHMEM HMMMYHOIEIPECAHTOB, U PUCKU
JIOJITOCPOYHOM MMMYHOCYIIPECCUU TPENCTaBISIOT I K-
HUIIMCTOB Cepbe3HYyI0 Mpobiemy. MMMyHHass TOJEpaHTHOCTb,
WM MMMYHOJIOTMYECKasi TOJIEPAHTHOCTb, WMJIW HMMMYHOTOJIE-
PAHTHOCTb, — 3TO COCTOSIHME HEBOCIIPUUMYMBOCTY UMMYHHOM
CHUCTEMbI K BELIECTBAM WJIM TKaHSIM, KOTOPbIe CIIOCOOHBI BbI-
3bIBaTh UMMYHHBII OTBET B JaHHOM opraHu3me. Eit mocBsiieHa
JAaHHAs CTaThsl.

KiroueBbie €J10Ba: TpaHcriaHTaLus OpraHoB; KMMMYHOCYIpec-
CUBHasl Teparivsi; OTTOpKEeHUE; UMMYHHAs TOJIEPAHTHOCTD; Pery-
JISTOPHBIE KJIIETKW; XUMEPHU3M; 0030p
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