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Вступ
У сучасній клінічній практиці показник швидкості 

клубочкової фільтрації (ШКФ) оцінюється за допо-
могою креатиніну у сироватці крові; однак результати 
цього методу можуть бути неточними, а оцінка окре-
мих функцій нирок неможливою [4, 17, 31]. Для най-
більш вірогідної та точної оцінки ШКФ золотим стан-
дартом вважається застосування методики екзогенного 
маркерного інсуліну. Однак через технічні труднощі та 
високу вартість методу він рідко використовується у 
клінічній практиці [43]. Кліренс крові визначають за 
допомогою [51Cr] етилендіамінтетраоцтової кислоти 
([51Cr] EDTA), що може вважатись привабливою аль-
тернативою. Але слід зазначити, що відомостей про 
роздільну функцію нирок за допомогою даного мето-
ду отримати неможливо і потреба в декількох заборах 
крові обмежує її широке застосування [5]. У зв’язку 
з цим саме ниркову радіонуклідну візуалізацію з ви-
користанням однофотонного випромінювача [99mTc] 
діетилентриамінпентаоцтової кислоти ([99mTc] DTPA) 

регулярно застосовують у клінічній практиці, оскільки 
вона дає можливість визначати роздільну функцію ни-
рок у контексті оцінки ШКФ [15, 23]. Ця методика до-
сить активно впроваджується в центрах ядерної меди-
цини для обчислення ниркового кровотоку та оцінки 
односторонньої функції нирок [23, 30, 42].

Однак процедури із застосуванням [99mTc] DTPA, 
що передбачають повторні дослідження крові та сечі, 
є тягарем як для пацієнтів, так і для клініцистів. Дана 
методологія також може призводити до недотримання 
процедурних інструкцій і недоліків у заборі зразків [6].

Як інший маркер функціональної активності па-
ренхіми нирок ефективний нирковий плазмотік 
(ЕНП) може бути одержаний з кліренсу інфузії пара
амінопіпуринової кислоти. Незважаючи на те, що дана 
методологія є еталонним стандартом для оцінки ЕНП, 
такий підхід неефективний для клінічної практики. 
Останніми роками [99mTc] меркаптоацетилтригліцин 
([99mTc] MAG3) регулярно застосовувався для вимірю-
вання трубної екстракції [2, 52]. З впровадженням у 
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Резюме. У статті розглянуто історичні аспекти та ключові питання клінічного застосування нових ра-
діофармпрепаратів (РФП) для позитронно-емісійної томографії (ПЕТ). Золотим стандартом для вимі-
рювання ефективного ренального плазмотоку є p-[18F] фторгіпурат ([18F] PFH) завдяки структурі, що по-
дібна до р-аміноімпурату. [18F] FDS — новий потенціальний трейсер для діагностики гострої ниркової 
недостатності. ПЕТ-трейсери Re (CO) 3 ([18F] FEDA) і [18F] PFH є ефективними сурогатними маркерами 
з метою відбору пацієнтів для ендорадіотерапії з потенційним нефротоксичним профілем, у хворих 
на гемопоетичні злоякісні пухлини, рак передміхурової залози. ПЕТ-візуалізація нирок і сечовидільної 
системи може мати додаткове значення у складних клінічних ситуаціях і забезпечувати ефективну 
підтримку у прийнятті діагностичних рішень, зокрема у педіатричних пацієнтів. Подальший науковий 
діагностичний пошук повинен бути спрямований на синтезування нових РФП, які матимуть ідеальні 
властивості для ренальної функціональної візуалізації, низьке зв’язування з білками плазми, високу ме-
таболічну стабільність та низький гепатобіліарний кліренс.
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клінічну практику методів гібридної візуалізації із за-
стосуванням однофотонної емісійної комп’ютерної 
томографії/комп’ютерної томографії (ОФЕКТ/КТ) 
пропонується тривимірна анатомічна візуалізація, 
але тривалий термін отримання дагностичних даних і 
низький просторово-часовий дозвіл все ще обмежують 
потенціал даного методу для кількісної оцінки [14, 15]. 
Однак слід зазначити, що ОФЕКТ/КТ у чистому ви-
гляді як стандартна методика візуалізації при захворю-
ванні нирок не використовується у зв’язку з тим, що 
не несе додаткової діагностичної інформації для уроло-
гів порівняно з КТ. У данному випадку застосовується 
тільки ОФЕКТ.

Методика розрахунку ЕНП і ШКФ полягає у ви-
значенні кліренсу нефротропних радіофармпрепаратів 
(РФП) на основі визначення загального кліренсу без 
взяття проб крові та сечі та базується на математичній 
обробці серцевої кривої. Зниження радіоактивності 
ниркових РФП в часі описується експонентою.

Для РФП із клубочковим механізмом елімінації 
стандартизований об’єм розподілу приймається за 
7,5 % маси тіла, для канальцевих РФП — за 17 %. Ве-
личину кліренсу нормують на стандартну поверхню 
тіла — 1,73 м2. Слід зазначити, що ЕНП та ШКФ роз-
раховують окремо для кожної нирки відносно до радіо-
активності нирки на ренограмі з відсіченням фону тіла 
на третій хвилині — для клубочкових РФП та на другій 
хвилині — для канальцевих [24]. Слід зазначити, що 
сучасні програми та моделі кінетики ниркових РФП 
враховують глибину залягання пухлини залежно від ан-
тропометричних даних пацієнта. Це також справедливо 
і для хворих з опущенням та ротацією нирки. У дано-
му випадку повинна виконуватись бокова проєкція або 
ОФЕКТ з подальшою корекцією параметрів ШКФ та 
ЕНП за площею діагностичних зображень [24].

Позитронно-емісійна томографія (ПЕТ) в уроло-
гії застосовується з метою оцінки функціональної ак-
тивності паренхіми нирок та має декілька ключових 
переваг, таких як краща просторово-часова роздільна 
здатність, абсолютна кількісна оцінка діагностичних 
параметрів і швидка тривимірна візуалізація. У зв’язку 
з цим з метою оцінки функціональної активності па-
ренхіми нирок на сучасному етапі активно вивчаєть-
ся низка ниркових ПЕТ-радіотрейсерів, включаючи 
[68Ga] EDTA, [18F] Re (CO) 3-N-(флуороетил) іміноді-
ацетна кислота (Re (CO) 3 ([18F] FEDA)) та фторосор-
біт 2-дезокси-2-[18F] ([18F] FDS) тощо [20, 27, 48, 57] 
(рис. 1).

Ниркова перфузія. Ниркова перфузія може бути ви-
значена шляхом візуальної та кількісної оцінки радіо-
технічного транзиту РФП після ін’єкції (через черевну 
та ниркову артерії) [46].

Відносне поглинання нирок. Відносне поглинання 
нирок здійснюється шляхом оцінки диференціальної 
функції нирок, наприклад за допомогою розміщення 
ділянок, що становлять інтерес (ROI) над нирками, і 
вимірювання інтегралу підрахунків в ROI після вну-
трішньовенного введення РФП [46]. Така роздільна 
оцінка ниркової функції окремо лівої і правої нирки 

має надзвичайно важливе значення в контексті донор-
ства нирок [40].

Максимальна паренхіматозна активність (T
max

 і 
T

1/2max
). T

max
 визначається як час, що минув від ін’єкції 

до висоти піку ренограми, тоді як T
1/2max

 — час зменшен-
ня ниркової активності до 50 % від його максимально-
го значення. Останній параметр зазвичай використо-
вується як показник екскреторної здатності нирок та 
оцінки різного ступеня його порушень. На цей пара-
метр можуть впливати різні чинники (стан гідратації, 
тип РФП, що застосовується, наявність патології сечо-
вого міхура тощо) [46, 47], що успішно нівелюється за 
рахунок правильної та послідовної підготовки хворого 
до дослідження 

Планарні методи ниркової радіонуклідної візуалі-
зації мають низку недоліків, що включають обмежену 
просторово-часову роздільну здатність і відсутність 
анатомічної інформації. Зокрема, гібридні пристрої 
для обробки зображень, такі як сканери ОФЕКТ/КТ, 
дозволяють отримувати тривимірну оцінку та ана-
томічну корекцію, хоча ці ознаки зазвичай не вико-
ристовуються в клінічній рутинній роботі. Крім того, 
необхідна корекція на ослаблення м’яких тканин, на-
приклад, шляхом оцінки глибини залягання нирок або 
шляхом застосування коефіцієнта ослаблення [46]. На 
відміну від ОФЕКТ ПЕТ-візуалізація має низку пере-
ваг, які можна вважати ключовими характеристиками 
для більш ретельної оцінки функції нирок. До них від-
носиться покращений просторово-часовий дозвіл, аб-
солютні квантові підходи до кількісного визначення і 
мультиспіральна КТ для анатомічної реєстрації. Однак 
найважливішою перевагою ПЕТ-візуалізації порів-
няно зі звичайною ОФЕКТ є значно вища швидкість 
рахунку, що, у свою чергу, дозволяє персоналу отриму-
вати значно менші дози опромінення. Наприклад, для 
дослідження нирок за допомогою ПЕТ з [68Ga] EDTA 
зазвичай застосовуюється РФП активністю 40 МБк. 
Ефективна доза ПЕТ-компонента становить 1,6 мЗв, 
що дорівнює приблизно 320 МБк [99mTc] DTPA [15, 
57]. Як результат, опромінення мінімізується без шко-
ди для якості зображення.

Отже, використання ПЕТ для ниркової візуалізації, 
в тому числі оцінка ШКФ, може поліпшити ідентифі-
кацію структурних аномалій і кількісного визначення 
обструктивних процесів у пацієнтів як дитячого, так і 
дорослого віку. Зокрема, у пацієнтів дитячого віку за-
стосовується потенційно менша доза опромінення від 
ПЕТ-радіоіндикаторів [4, 57]. Впровадження техно-
логії «польоту», вдосконалення технології детекторів 
та оптимізовані реконструктивні алгоритми можуть 
дозволити подальше зниження кількості введеної ак-
тивності [15]. Крім того, внутрішня здатність нирко-
вих ПЕТ-випромінювачів забезпечувати томографічні 
зображення нирок може дозволити усунути фонову ак-
тивність від оточуючих органів, таких як великі судини 
і селезінка [4]. Отже, криві «активність — час» здатні 
генеруватися виключно за рахунок поглинання РФП в 
нирках і автоматично застосовувати стандартизований 
поріг величини поглинання для визначення активності 
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в системі збору [15] на відміну від ниркової сцинтигра-
фії, в якій ROI охоплює всю поверхню нирки. [99mTc] 
DTPA має більш виражений зв’язок з білками плазми, 
ніж інші радіоіндикатори, які застосовуються для оцін-
ки ШКФ. Показано, що зв’язування білків змінюється 
на 10–13 %, а завдяки позаклітинній локалізації DTPA 

вони негативно впливають на точність діагностично-
го процесу [36]. Однак ПЕТ-радіоіндикатори, такі як 
[68Ga] EDTA, [18F] FDS і Re (CO) 3 ([18F] FEDA), мо-
жуть мати чудову фармакокінетику профілів, головним 
чином через низьке зв’язування з білками плазми і ви-
соку метаболічну стабільність (рис. 1) [15, 27, 48].

Рисунок 1: a) [18F] синтез флуородеоксисорбітолу ([18F] FDS). [18F] FDS може бути отриманий шляхом 
одноетапної редукції з 2-дезокси-2-[18F]-фтор-D-глюкози ([18F] FDG) [25]; b–d) in vivo [18F] FDS ПЕТ-

візуалізація здорових щурів; b) динамічні корональні ПЕТ-зображення демонструють високу секрецію 
радіомаркера виключно через нирки; c) динамічні поперечні та корональні зображення правої нирки 
виявляють швидке накопичення радіомаркера у нирковій корі; d) приклад кривих часу та активності 

динамічної ПЕТ-томографії нирок (зліва) та сечового міхура (праворуч) [48]
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[68Ga]-мічені радіоіндикатори  
для дослідження функції нирок 
[68Ga] EDTA

M.S. Hofman та R.J. Hicks [15] першими повідомили 
про використання ПЕТ-радіоіндикатора [68Ga] EDTA в 
клінічній практиці з метою оцінки функції нирок, який 
виводиться з організму шляхом клубочкової фільтрації. 
Після введення даного радіоіндикатора він спочатку 
концентрується в крові, в той час як аорта (або серце) 
потенційно може використовуватися для забезпечен-
ня функцій кінетичного аналізу. Згодом активність 
РФП збільшується в паренхімі нирки, після чого від-
бувається поступове розмежування і транзит введеної 
активності в систему збору, що спостерігається через 
3–4 хв після ін’єкції. Hofman et al. вивчали пацієнтів 
з нирково-клітинною карциномою, яким було здій-
снено ОФЕКТ/КТ з [99mTc] DMSA та ПЕТ/КТ з [68Ga] 
EDTA до проведення стереотаксичної променевої те-
рапії [15]. За даними аналізу результатів ОФЕКТ/КТ 
та ПЕТ-візуалізації, виявлено, що [68Ga] EDTA може 
надавати додаткову інформацію щодо функціональної 
оцінки нирок на ранній фазі ниркового паренхіматоз-
ного транзиту [14, 15].

[68Ga] DTPA
Враховуючи, що 99mTc-мічений DTPA застосову-

ється з метою визначення функціональної оцінки ни-
рок вже протягом кількох десятиліть, Gundel et al. [23] 
було досліджено нирковий ПЕТ-випромінювач [68Ga] 
DTPA порівняно з [68Ga] EDTA in vitro та in vivo у ко-
пенгагенськіх щурів чоловічої статі. Тільки у 30 % під-
дослідних [68Ga] DTPA виводилася через нирки, в той 
час як [68Ga] EDTA виводився через нирки у 90 % під-
дослідних [11]. Порівняно з [68Ga] DTPA [68Ga] EDTA 
демонструє кращу діагностичну ефективність [11, 15]. 
Крім того, слід зазначити, що DTPA має найнижчий 
відсоток фіксації з білками плазми крові, розміри його 
молекули дозволяють вірогідно оцінювати ШКФ. 

[68Ga] 1,4,7-триазациклопропан-1,4,7-
триоцтова кислота ([68Ga] NOTA)

J.Y. Lee et al. [24] оцінювали 68Ga-комплекси (EDTA, 
DTPA і NOTA) і вимірювали зв’язування з сироват-
кою та еритроцитами поряд із порівнянням значення 
ШКФ при застосуванні [51Cr] EDTA у мишей. Слід за-
значити, що при використанні [68Ga] NOTA отримано 
низьке зв’язування з сироватковими білками, а також 
більш низький рівень ШКФ порівняно із показником 
еталонного стандарту [51Cr] EDTA. Отже, [68Ga] NOTA 
може мати значний потенціал як нирковий ПЕТ-агент 
[14]. Вже в 1960-х роках [68Ga] EDTA застосовувався як 
радіоіндикатор у хворих з гліобластомою з викорис-
танням позитронної сцинтиляційної камери [39] і став 
ініціюючим чинником в розробці та вивченні [68Ga] 
NOTA [15].

[68Ga] IRDye800-тилметакрилат
Діабетична нефропатія є основною причиною нир-

кової недостатності [1]. Qin et al. вперше застосовували 

радіоіндикатор [68Ga] IRDye800-тильмонофосфат для 
оцінки ШКФ у щурів. На графічних кривих «актив-
ність — час» авторами було отримано рецепторно-опо-
середковане накопичення РФП в нирках. Досліджуючи 
локалізацію тильманоцементного рецептора (CD206) і 
IRDye800-тильмонофосфату в межах клубочків, було 
підтверджено накопичення радіоіндикатора в мезангі-
альних клітинах. У недіабетичних щурів спостерігалась 
однофазна крива «активність — час» з низьким нако-
пиченням РФП в сечовому міхурі, в той час як у щурів 
з діабетом було отримано мультифазну криву «актив-
ність — час» з високим накопиченням радіоіндикато-
ра. Враховуючи вирішальну роль мезангіальних клітин 
при прогресуванні діабетичної нефропатії, автори ді-
йшли висновку, що [68Ga] IRDye800-тильмонофосфат 
може стати новим рецерторним біомаркером ПЕТ 
(ОФЕКТ)-візуалізації для вивчення моніторингу про-
гресування діабетичної нефропатії [35].

Радіомаркери з міткою 18F  
для дослідження функції нирок

Радіоіндикатори з міткою 18F мають перевагу за ра-
хунок меншої енергії позитронів, що, в свою чергу, на-
дає можливість застосовувати значно менші активності 
РФП без негативних наслідків щодо якості візуалізації 
та покращує контрастні та шумові характеристики 
зображень [38]. Також слід зазначити, що 18F має зна-
чно більший період напіввиведення (110 хв), ніж 68Ga 
(68 хв), що дозволяє своєчасно доставляти РФП із цен-
тральних закладів, що мають в наявності циклотрон, 
до інших відділень ядерної медицини, що не мають 
циклотрону [53, 55]. Циклотронне виробництво РФП 
має значно кращий потенціал щодо кількісного напра-
цювання радіонуклідів на відміну від генераторного 
виробництва. У зв’язку з цим збільшується коефіцієнт 
корисної ефективності застосування ПЕТ-2-дезокси-
2-[18F] фтор-D-глюкози ([18F] FDG) [7]. Більше того, 
триваліший період напіввиведення дозволяє отриму-
вати більшу гнучкість у дизайні дослідження шляхом 
застосування протоколів затримки візуалізації, які мо-
жуть забезпечити подальше розуміння кінетики радіо-
нуклідів у нирковій системі. 

[18F] FDS
На початковому етапі розвитку ядерної медици-

ни [18F] FDS було розроблено з метою візуалізації в 
онкології та при запальних захворюваннях, зокрема 
в діагностиці інфекційних процесів, що спричинені 
Enterobacteriaceae [22, 25]. [18F] FDS можна легко син-
тезувати з [18F] FDG, і, таким чином, [18F] FDS може 
бути доступним у найближчій перспективі на багатьох 
сайтах, які мають радіохімічну інфраструктуру [26, 41]. 
З огляду на структуру сорбіту, що лежить в основі [18F] 
FDS, можна припустити, що він успадковує кінетичні 
особливості, які майже ідентичні до кінетики інуліну. 
[18F] FDS було вперше досліджено на здорових щурах з 
метою визначення його основних властивостей біороз-
поділу як ниркового ПЕТ-маркера, включаючи кліренс 
через системні ниркові шляхи, зв’язування білка плаз-
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ми та метаболічну трансформацію. Виявлено, що після 
початкової фази кровотоку через нижню порожнисту 
вену спостерігалося поступове розмежування РФП в 
нирковій корі. Крім того, було виявлено залежне від 
часу збільшення слідової радіоактивності в сечовому 
міхурі. Слід зазначити, що вже під час другого кадру 
(8–16 с) ПЕТ-візуалізації спостерігалось швидке по-
глинання радіоіндикатора у кірковій речовині нирок. 
Після цього на томографічних зрізах спостерігалося 
тимчасове підвищення радіоактивності в корі нирок з 
подальшим транзитом радіомаркера до системи збору. 
За результатами аналізу, нирки мають найвищий захват 
даного радіомаркера навіть через 60 хв після введення. 
Слід зазначити, що концентрація радіоіндикатора у ки-
шечнику та печінці залишалася стабільною з часом, що 
свідчить про низький гепатобіліарний кліренс та нир-
кову секрецію [18F] FDS. Низька концентрація радіо-
активно мічених метаболітів в крові та сечі через 35 хв 
після ін’єкції була підтверджена результатами тонко-
шарової радіохроматографії. Таким чином, можна при-
пустити, що [18F] FDS вільно фільтрується в ниркових 
клубочках, і це відповідає попереднім висновкам, що 
показують швидкий кліренс екзогенного введеного 
сорбіту, який є ідентичним до кліренсу інуліну [48].

Зв’язування білка з плазмою також має великий 
вплив на кінетику радіонуклідів. За даними літератур-
них джерел, білкове зв’язування [99mTc] DTPA знахо-
диться в діапазоні від 2 до 10  % [21, 37], тоді як [18F] 
FDS демонструє мінімальне in vivo зв’язування з біл-
ками сироватки крові в межах <  0,1  % [37]. У світлі 
цієї інформації ниркові розлади було досліджено на 
двох моделях щурів з метою визначення потенційної 
клінічної користі радіотрактора [18F] FDS. По-перше, 
гостру ниркову недостатність було індуковано у щурів 
внутрішньом’язовою ін’єкцією гліцерину. По-друге, 
односторонню непрохідність сечоводу було модифі-
ковано шляхом повного перев’язування лівого сечо-
воду. У той час як здорові контрольні щури показали 
нормальну фізиологічну схему розподілу радіомарке-
ра, у щурів з гострою нирковою недостатністю спо-
стерігалось значно зменшене поглинання в нирковій 
корі поряд із відносно низьким показником екскреції 
через сечовидільну систему. Ренограми показали не-
функціональну схему із зниженою секрецією радіо-
індикатора в нирках щурів з нирковою недостатністю 
на відміну від здорових контрольних тварин. З іншо-
го боку, щури з односторонньою непрохідністю сечо-
воду продемонстрували значну затримку захоплен-
ня радіомаркера в області перешкоди на відміну від 
контралатерального сечоводу, в якому спостерігався 
нормальний розподіл [18F] FDS. Ренограми показали 
типову обтураційну криву без подальшого піку під час 
паренхіматозної фази [57]. У першому дослідженні на 
людях, у яких спостерігали кінетику препарату [18F] 
FDS, [18F] FDS-ПЕТ дослідження у динамічному ре-
жимі було проведено двом волонтерам без наявності 
ниркової патології. Після внутрішньовенного введен-
ня РФП у нирковій паренхімі поступово збільшувалась 
кількість радіоіндикатора до 60 с після початку введен-

ня (судинна фаза), після чого радіомаркер поступово 
виводився із організму. За результатами кількісного 
аналізу функціональних ренограм волонтерів було 
отримано показники фізіологічної норми, в тому числі 
параметри судинної, паренхіматозної та екскреторної 
фази. Максимальна паренхіматозна активність (Т

max
 

через 3 хв після введення) відповідала результатам, що 
були отримані при дослідженні з [99mTc] DTPA та [99mTc] 
MAG3 [10, 56]. 

Re (CO) 3 ([18F] FEDA)
На відміну від [68Ga] EDTA та [18F] FDS, які в осно-

вному використовуються для оцінки ШКФ, останніми 
роками увага наковців була зосереджена на розробці 
та впровадженні інших ниркових ПЕТ-маркерів, що 
відображають функціональну активність паренхіми 
нирок, наприклад Re (CO) 3 ([18F] FEDA) та його ана-
лог для ОФЕКТ-візуалізації — [99mTc] (CO) 3 (FEDA) 
[3]. [99mTc] (CO) 3 (FEDA) демонстрував у піддослідних 
щурів швидку ниркову екскрецію, подібну до орто-
йодогіпурату [131I] ([131I] OIH) [20, 28]. Re (CO) 3 ([18F] 
FEDA) виявляв високу ниркову специфічність, високу 
in vitro та in vivo стабільність, а також швидку ниркову 
екскрецію, що корелювала з аналогом [99mTc] (CO) 3 
(FEDA) [27]. Фармакокінетичні властивості Re (CO) 3 
([18F] FEDA) також можна порівняти з ортойодогіпура-
том [131I] [8, 27]. Також слід зазначити, що маркер [99mTc] 
(CO) 3 (FEDA) є економічно більш доступним — у п’ять 
разів дешевший, ніж Re (CO) 3 ([18F] FEDA) [27].

Al [18F] NODA-масляна кислота
Дослідження біорозподілу Al [18F] NODA-масляної 

кислоти у звичайних щурів та щурів з імітованою нир-
ковою недостатністю доводить, що Al [18F] NODA-
масляна кислота секретується виключно через нирко-
ву систему. Таким чином, цей радіотрейсер також може 
надавати вірогідну кількісну оцінку уродинамічних 
процесів [29].

p-[18F] фторгіпурат ([18F] PFH)
[18F] PFH має структуру, що подібна до р-аміногіпу

рату, що вважається золотим стандартом для вимірю-
вання ефективного ренального плазмотоку. Awasthi et al. 
ідентифікували [18F] PFH як потенційний ПЕТ-трейсер 
[3]. Pathuri et al. [34] було надано порівняльну характе-
ристику ренограм, отриманих за допомогою [18F] PFH, 
з результатами аналізу досліджень, що було виконано за 
допомогою [125I] OIH та [99mTc] MAG3. Зокрема, порівня-
но з похідними параметрами уродінамики (T

max
, T

1/2max
), 

отриманими з [99mTc] MAG3, показники, що було одер-
жано за допомогою [18F] PFH, були подібні до параме-
трів, що отримано з [125I] OIH. Однак візуалізація з [18F] 
PFH забезпечувала кращу якість зображення [34]. Інше 
дослідження, що проведено у щурів з повільно прогре-
суючим автосомно-домінантним полікістозом нирок, 
показало, що [18F] PFH може бути сурогатним маркером 
прогресування даного захворювання, що ще більше під-
креслює потенційну клінічну корисність цього трейсера 
в майбутніх проспективних досліджннях [33].
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[18F] FDG
[18F] FDG як ПЕТ-трейсер бере участь у численних 

фізіологічних процесах і, таким чином, може не бути 
ідеальним специфічним маркером для оцінки функції 
нирок. Проте [18F] FDG має дуже широкий спектр за-
стосування в онкологічнії практиці, дає можливість під 
час аналізу ефективно розраховувати кількісні та якісні 
параметри функціонування нирок [9].

Клінічні показання до ниркової  
ПЕТ-візуалізації

ПЕТ має низку переваг перед звичайною сцин-
тиграфією, хоча високі економічні витрати на дослі-
дження ПЕТ зазвичай визначають ступінь частоти за-
стосування даної діагностичної методики та дорогих 
ПЕТ-трейсерів [4]. [68Ga] ЕDТА є оптимальним радіо
маркером для моніторингу вираженого стенозу нир-
кової артерії [12, 15, 45]. Blaufox et al. запропонували 
ПЕТ-моніторинг з [68Ga] ЕDТА з метою оцінки функ-
ціональної активності паренхіми нирок під час про-
ведення хіміотерапії, променевої терапії, визначення 
показань для донорства нирки тощо [4, 12, 13, 19]. 
Слід зазначити, що загальні сцинтиграфічні/ОФЕКТ 
підходи можуть призводити до недооцінки зниження 
функціональної активності паренхіми однієї з нирок 
(наприклад, викликаного мальротацією), що має зна-
чення не тільки при селективному відборі донорів для 
трансплантації нирок, а також при іншій патології ни-
рок [49, 50]. У даному випадку доречно застосовувати 
гібридну візуалізацію ПЕТ/КТ, що включає сучасну 
програму анатомічної корекції [3]. Окрім цих мірку-
вань, теоретичні підходи до лікування нейроендокрин-
них пухлин (NET) з використанням [68Ga] DOTA-D-
Phe-Tyr3-октреотат/октреотид ([68Ga] DOTA-TATE/
TOC) та [177Lu] DOTA-TATE/TOC все частіше вико-
ристовуються у клінічній практиці [44]. Аналоги со-
матостатину здатні викликати зниження функції ни-
рок, у зв’язку з чим було висунуто гіпотезу, що [99mTc] 
MAG3 може бути придатним маркером для оцінки 
ранніх стадій патології нирок у пацієнтів, які зазнали 
повторних циклів ендорадіотерапії [52]. Таким чином, 
ПЕТ-агенти для оцінки функціонального стану нирок, 
включаючи Re (CO) 3 ([18F] FEDA) і [18F] PFH, можуть 
бути кращими сурогатними маркерами з метою відбору 
пацієнтів для ендорадіотерапії з потенційним нефро-
токсичним профілем, у хворих на гемопоетичні зло-
якісні пухлини або рак передміхурової залози [16, 32].

Також розглянуто сучасні аспекти застосування 
ПЕТ нирок та сечовидільної системи у педіатричних 
хворих [4, 15, 48, 51]. ПЕТ нирок та сечовидільної систе-
ми надає цінну діагностичну інформацію для ефектив-
ного прийняття рішень, оскільки дозволяє одночасно 
оцінювати функцію нирок і анатомічно-морфологічну 
складову в одному дослідженні. Крім того, швидкість 
збору діагностичної інформації ПЕТ вища, ніж звичай-
ної сцинтиграфії, і, таким чином, є меншим променеве 
навантаження на пацієнтів і медичний персонал [15]. 
ПЕТ-візуалізація нирок і сечовидільної системи може 
мати додаткове значення у складних клінічних ситуаці-

ях і забезпечити ефективну підтримку у прийнятті діа-
гностичних рішень, зокрема у педіатричних пацієнтів 
[54]. Подальший науковий діагностичний пошук по-
винен бути спрямований на синтезування нових РФП, 
що матимуть ідеальні властивості для ренальної функ-
ціональної візуалізації, низьке зв’язування з білками 
плазми, високу метаболічну стабільність та низький 
гепатобіліарний кліренс [54].

Конфлікт інтересів. Автори заявляють про відсут-
ність конфлікту інтересів та власної фінансової заці-
кавленості при підготовці даної статті.
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Новые позитронно-эмиссионные радиофармпрепараты в урологической радионуклидной визуализации

Резюме. В статье рассмотрены исторические аспекты и клю-
чевые вопросы клинического применения новых радиофарм-
препаратов (РФП) для позитронно-эмиссионной томогра-
фии (ПЭТ). Золотым стандартом для измерения эффектив-
ного ренального плазмотока является p-[18F] фторгиппурат 
([18F] PFH) благодаря структуре, схожей с р-аминоимпуратом. 
[18F] FDS — новый потенциальный трейсер для диагностики 
острой почечной недостаточности. ПЭТ-трейсеры Re (CO) 3 
([18F] FEDA) и [18F] PFH являются эффективными суррогат-
ными маркерами с целью отбора пациентов для эндорадио-
терапии с потенциальным нефротоксическим профилем, у 
больных с гемопоэтическими злокачественными опухолями, 
раком предстательной железы. ПЭТ-визуализация почек и 

мочевыделительной системы может иметь дополнительное 
значение в сложных клинических ситуациях и обеспечивать 
эффективную поддержку в принятии диагностических реше-
ний, в частности у педиатрических пациентов. Дальнейший 
научный диагностический поиск должен быть направлен на 
синтезирование новых РФП, которые будут иметь идеальные 
свойства для почечной функциональной визуализации, низ-
кое связывание с белками плазмы, высокую метаболическую 
стабильность и низкий гепатобилиарный клиренс.
Ключевые слова: радионуклидная визуализация; пози-
тронно-эмиссионная томография; почки; радиофармпрепа-
рат; скорость клубочковой фильтрации; эффективный по-
чечный плазмоток; обзор
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New positron emission radiopharmaceuticals in urological radionuclide imaging

Abstract. The literature review examines the historical aspects 
and key issues of the clinical application of new radiopharmaceuti-
cals (RF) for positron emission tomography (PET). The gold stan-
dard for measuring effective renal plasma flow is p-[18F] fluorohip-
purate ([18F] PFH) due to its structure close to p-aminoimpurate 
one. [18F] FDS is a new potential tracer for the diagnosis of acute 
renal failure. PET tracers Re (CO) 3 ([18F] FEDA) and [18F] PFH 
are effective as surrogate markers for the selection of patients for 
endoradiotherapy with a potential nephrotoxic profile, in patients 
with hematopoietic malignant tumours and prostate cancer. PET 

imaging of the kidneys and urinary system can be of additional im-
portance in difficult clinical situations and provide effective sup-
port in making diagnostic decisions, in particular in paediatric pa-
tients. Further scientific diagnostic research should focus on the 
synthesis of new radiopharmaceuticals that will have ideal proper-
ties for renal functional imaging, low binding to plasma proteins, 
high metabolic stability and low hepatobiliary clearance.
Keywords: radionuclide imaging; positron emission tomography; 
radiopharmaceutical; kidneys; glomerular filtration rate; effective 
renal plasma flow; review
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